R语言社区发现算法检测心理学复杂网络:spinglass、探索性图分析walktrap算法与可视化

简介: R语言社区发现算法检测心理学复杂网络:spinglass、探索性图分析walktrap算法与可视化

原文链接:http://tecdat.cn/?p=24613


我们在心理学网络论文中看到的一个问题是,作者有时会对其数据的可视化进行过度解释。这尤其涉及到图形的布局和节点的位置,例如:网络中的节点是否聚集在某些社区。

下面我将详细讨论这个问题,并提供一个关于如何识别网络中项目社群的基本R教程。非常欢迎在下面的评论部分提出反馈。


节点部署和 Fruchterman-Reingold 算法


我们创建一个例子。首先,我们拿一些数据,估计一个正则化的偏相关网络,其中节点之间的边类似于偏相关,并使用'spring'命令绘制网络。这是心理学网络文献中默认的,使用Fruchterman-Reingold算法为图中的节点创建一个布局:具有最多连接/最高连接数的节点被放在图的中心。

cort<- cor(data)
 
graph(cort,layout="spring")

matrix 是这 20 个项目的相关矩阵, Size 命令告诉我们有多少人。

这是结果图:

然而,这里的节点部署只是许多同样 "正确 "的节点部署方式中的一种。当网络中只有1-3个节点时,算法将总是以同样的方式部署它们(其中节点之间的边的长度代表它们之间的关系有多强),算法唯一的自由度是图形的旋转。但是,特别是在有许多节点的图中,部署方式只告诉我们一个非常粗略的结果,不应该被过度解释。


点击标题查阅往期内容


R语言复杂网络分析:聚类(社区检测)和可视化


01

02

03

04


以下是绘制我们上述网络的另外两种方法,它们同样 "正确"。

nNd <- 20
set.seed(1)
grh2<-grph
set.seed(2)
gr3<-grph

虽然项目之间的边显然是相同的,但节点的位置却有很大的不同。


欧洲神经精神药理学例子


《欧洲神经精神药理学》(European Neuropsychopharmacology)上Madhoo & Levine的一篇新论文为这个问题提供了一个很好的例子。他们在两个时间点(相隔12周)调查了约2500名被诊断为重度抑郁症的精神科门诊病人的14种抑郁症状的网络结构。这篇论文的一个非常不错的贡献是,他们研究了网络结构随时间的变化,其方式与我们以前在同一数据集中的研究有些不同。

与上面的网络例子类似,他们使用正则化的偏相关网络来估计两个时间点的横截面网络模型,并使用Fruchterman-Reingold算法绘制网络。他们通过目测得出结论,有4个症状群存在,而且这些症状群没有随时间变化。

"在基线时,网络由四个症状群组成(图1a),即:睡眠障碍(项目1-5),认知和物理动机缺损(项目6-9),情感(项目10-12)和食欲(项目(13-14)。

[...]终点症状分组(图1b)与基线时相似"。

但这些发现和结论仅仅是基于对结果图的视觉检查--而我们在上面已经了解到,对这些图的解释应该非常谨慎。值得注意的是,这种视觉上的过度解读在心理学网络文献中相当常见。

让人眼前一亮的另一个原因是,我们在最近的一篇论文中分析了同一数据集的社群结构,发现社群的数量随时间而变化--这与作者对图表的视觉解释相冲突。


R中的数据驱动的社群聚类


那么,如何在R中做到这一点?有许多可能性,我介绍三种:一种来自潜变量建模领域的非常成熟的方法(特征值分解);一种来自网络科学的成熟算法(spinglass算法);以及一种正在开发中的非常新的工具(使用walktrap算法的探索性图分析)。


特征值分解


传统上,我们想用潜变量框架来描述上述20个项目,问题是:我们需要多少个潜变量来解释这20个项目之间的协方差?一个非常简单的方法是查看数据中各成分的特征值。

plot(eigen)
abline(h=1)


这向我们显示了Y轴上每个成分的每个特征值;X轴显示了不同的成分。一个高的特征值意味着它能解释项目之间的大量协方差。红线描述了所谓的标准:一个简单的规则,决定我们需要多少个成分来充分描述项目之间的协方差(每个成分的特征值>1)。无论如何,根据我们现在使用的规则,我们可能会决定提取2-5个成分。我们还不知道哪个项目属于哪个成分--为此,我们需要运行,例如,探索性因子分析(EFA),看看因子载荷。

为什么这与网络有关呢?许多论文现在已经表明,潜变量模型和网络模型在数学上是等价的,这意味着在大多数情况下,支撑数据的因素的数量将转化为你在网络中可以找到的社区的数量。


Spinglass算法


第二种方法是所谓的spinglass算法,该算法在网络科学中已经非常成熟。为此,我们将上面估计的网络输入到R中。最相关的部分是最后一行membership。

spinglascmy(g)
mershp

在我们的例子中,spinglass算法检测到了5个社区,这个向量代表了这20个节点属于哪个社区(例如,节点1-7属于社区5)。然后,我们可以很容易地在qgraph中绘制这些社区,例如,对节点进行相应的着色。请注意,iqgraph是一个非常通用的软件包,除了spinglass算法之外,它还有许多其他检测社区的可能性,比如walktrap算法。(感谢Alex Millner对igraph的投入;当然,这里所有的错误都是我的错误)。

值得注意的是,spinglass算法每次运行都会导致不同的结果。这意味着你应该在运行spinglass.community之前通过set.seed()设置一个种子,而不是像我上面那样。我运行该算法1000次,看看得到的聚类数量的中位数,然后找到一个能重现这个聚类数量中位数的种子。我在一篇论文中使用了这个解决方案(注意,使用不同的种子,解决方案看起来是不同的)。

同样关键的是,要知道有许多种不同的方法来做社群检测。Spinglass有些简单化,因为它只允许项目成为一个社区的一部分--但可能项目被描述为同时属于几个社区更好。Barabási的书 "网络科学 "中有一个关于社区检测的广泛章节。Spinglass只是众多机会中的一个。正如我上面提到的:例如walktrap,也是常用的,而且更稳定。


探索性图分析


第三种方法是通过探索性图表分析。从你的数据中重新估计了一个正则化的部分相关网络,与我们上面所做的类似,然后使用walktrap算法来寻找网络中的项目社群。在使用walktrap算法的情况下,这应该会得到与igraph相同的结果(并且细节设置相同,比如步骤数)。

优点是--与特征值分解不同--它直接显示哪些项目属于哪些社群。

walktrap(da, plt= TRUE)

如果这个方法被证明是有效的,它非常容易使用,并自动显示你的项目属于哪个社区。

请注意,目前,探索性图分析采取你的数据并自动估计一个高斯图形模型(假设是多变量的正常变量)。


spinglass算法和walktrap算法结果是一样的吗?


现在,我们想检查一下我们的结果的稳健性:spinglass算法和使用walktrap算法在社区检测方面是否一致?

这很容易做到:让我们把这两个网络画在一起,并对社区进行相应的着色。首先,我们根据结果来定义社群,然后用上面第一个网络的布局来绘制网络。

walktrap(coate tile="walktap")
 
spinglass(coratix, tite="spinglass")

直觉上--基于视觉检查--walktrap的解决方案似乎更有意义,其中节点8属于蓝色社区而不是紫色社区。但是,同样,这只是复杂关系的图形显示,我们在这里必须谨慎解释。

因此,让我们用一个稍微不同的布局来绘制同一个网络。

walktrap(layou = list(int = atinomNe2,no,2)))
spinglass(cori,  layo.pr = list(iit=matrxnrm(Nd2)nde2

正如你现在看到的,在这个可视化中,不清楚节点8应该属于蓝色还是红色社区,我们没有明确的直观偏好。


结论


如果你对网络中的项目之间的统计社区感兴趣,不要只在视觉上检查你的图。当我为论文做这件事时,我使用上面描述的三种方法,通常它们的结果相当相似。显然,你也可能对理论或概念更感兴趣。在这种情况下,你可能根本不需要看你的数据,不需要经历上述所有的麻烦。

请注意,上述spinglass或walktrap等社群检测方法的最大局限是,项目确定地只属于一个社群。对于心理学数据来说,拟合因子模型经常会发现有交叉负荷的项目,这是一个问题。而你可以通过模拟一个2因子模型看到,其中1个项目在两个因子上都有同样的载荷。希望我们很快就能在R中实现允许项目同时属于多个社区的算法(Barabási在他的《网络科学》一书第9章中描述了几个。

相关文章
|
1月前
|
监控 安全 算法
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
|
2月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
309 0
|
2月前
|
机器学习/深度学习 并行计算 算法
粒子群算法优化RBF神经网络的MATLAB实现
粒子群算法优化RBF神经网络的MATLAB实现
350 123
|
2月前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
420 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
1月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
247 5
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
存储 算法 安全
即时通讯安全篇(三):一文读懂常用加解密算法与网络通讯安全
作为开发者,也会经常遇到用户对数据安全的需求,当我们碰到了这些需求后如何解决,如何何种方式保证数据安全,哪种方式最有效,这些问题经常困惑着我们。52im社区本次着重整理了常见的通讯安全问题和加解密算法知识与即时通讯/IM开发同行们一起分享和学习。
277 9
|
30天前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
110 0
|
2月前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
104 2
|
2月前
|
机器学习/深度学习 传感器 算法
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
208 7