【项目日记(九)】项目整体测试,优化以及缺陷分析

简介: 【项目日记(九)】项目整体测试,优化以及缺陷分析

1. 前言

整个项目的代码和框架就已经介绍

完毕了,项目的所有代码在下面的链接:

gitee代码仓库项目源代码

本章重点:

本篇文章着重讲解本项目是如何测试的,
以及本代码的一些效率上限问题,最后会
引入基数树来对项目整体做优化


2. 整体项目测试

对本项目的测试无非就是将自己写的

内存池与C语言的malloc做对比,代码如下:

#include<cstdio>
#include<iostream>
#include<vector>
#include<thread>
#include<mutex>
#include"ConcurrentAlloc.h"
using namespace std;
void BenchmarkMalloc(size_t ntimes, size_t nworks, size_t rounds)//ntime一轮申请和释放内存的次数,round是跑多少轮,nworks是线程数
{
  std::vector<std::thread> vthread(nworks);
  std::atomic<size_t> malloc_costtime = 0;
  std::atomic<size_t> free_costtime = 0;
  for (size_t k = 0; k < nworks; ++k)
  {
    vthread[k] = std::thread([&, k]() {
      std::vector<void*> v;
      v.reserve(ntimes);
      for (size_t j = 0; j < rounds; ++j)
      {
        size_t begin1 = clock();
        for (size_t i = 0; i < ntimes; i++)
        {
          //v.push_back(malloc(16));
          v.push_back(malloc((16 + i) % 8192 + 1));
        }
        size_t end1 = clock();
        size_t begin2 = clock();
        for (size_t i = 0; i < ntimes; i++)
        {
          free(v[i]);
        }
        size_t end2 = clock();
        v.clear();
        malloc_costtime += (end1 - begin1);
        free_costtime += (end2 - begin2);
      }
      });
  }
  for (auto& t : vthread)
  {
    t.join();
  }
  printf("%u个线程并发执行%u轮次,每轮次malloc %u次: 花费:%u ms\n",
    nworks, rounds, ntimes, malloc_costtime.load());
  printf("%u个线程并发执行%u轮次,每轮次free %u次: 花费:%u ms\n",
    nworks, rounds, ntimes, free_costtime.load());
  printf("%u个线程并发malloc&free %u次,总计花费:%u ms\n",
    nworks, nworks * rounds * ntimes, malloc_costtime.load() + free_costtime.load());
}
// 单轮次申请释放次数 线程数 轮次
void BenchmarkConcurrentMalloc(size_t ntimes, size_t nworks, size_t rounds)
{
  std::vector<std::thread> vthread(nworks);
  std::atomic<size_t> malloc_costtime = 0;
  std::atomic<size_t> free_costtime = 0;
  for (size_t k = 0; k < nworks; ++k)
  {
    vthread[k] = std::thread([&]() {
      std::vector<void*> v;
      v.reserve(ntimes);
      for (size_t j = 0; j < rounds; ++j)
      {
        size_t begin1 = clock();
        for (size_t i = 0; i < ntimes; i++)
        {
          //v.push_back(ConcurrentAlloc(16));
          v.push_back(ConcurrentAlloc((16 + i) % 8192 + 1));
        }
        size_t end1 = clock();
        size_t begin2 = clock();
        for (size_t i = 0; i < ntimes; i++)
        {
          ConcurrentFree(v[i]);
        }
        size_t end2 = clock();
        v.clear();
        malloc_costtime += (end1 - begin1);
        free_costtime += (end2 - begin2);
      }
      });
  }
  for (auto& t : vthread)
  {
    t.join();
  }
  printf("%u个线程并发执行%u轮次,每轮次concurrent alloc %u次: 花费:%u ms\n",
    nworks, rounds, ntimes, malloc_costtime.load());
  printf("%u个线程并发执行%u轮次,每轮次concurrent dealloc %u次: 花费:%u ms\n",
    nworks, rounds, ntimes, free_costtime.load());
  printf("%u个线程并发concurrent alloc&dealloc %u次,总计花费:%u ms\n",
    nworks, nworks * rounds * ntimes, malloc_costtime.load() + free_costtime.load());
}
int main()
{
  size_t n = 10000;
  cout << "==========================================================" << endl;
  BenchmarkConcurrentMalloc(n, 10, 10);
  cout << endl << endl;
  BenchmarkMalloc(n, 10, 10);
  cout << "==========================================================" <<endl;
  return 0;
}

本代码是现成的,不用在意细节

当我们运行代码后会发现,为什么我们自己写的内存池的效率比不上C语言中的malloc函数,这一点显然超出了我们的预期,下面就来分析一下项目的效率上限问题


3. 项目的效率上限分析

在vs的调试中有一个性能探测器

我们可以使用这个功能来分析哪个步骤比较用时,当我们完成检测后会发现,在pagecache文件中的函数耗时都比较久,其实我们隐约已经知道问题出现在哪里了,我们知道unordered_map的底层是哈希桶结构,然而find函数会将每一个桶中的链表都遍历一遍,直到找到了对应的key值,很明显这个查找的过程是比较费时的,并且如果不切换一个容器来代替unordered_map的话,在这个基础上不管怎样去优化都不会有质的提升!!!


4. 效率上限问题的解决方法

对于上面的问题显然超出了我们的能力范围,对于一个C++的初学者来说,标准库中的容器已经是很优秀的了,如果要抛弃标准库,我们也不能写出更好的,所以这里直接将TCmalloc开源项目中的解决方法给搬过来,谷歌的团队使用了一个叫基数树的结构来完美的解决此问题

基数树的文档说明: 基数树百度百科

由于基数树属于此项目的拓展内容,所以这里就不详细介绍了,完美直接把代码搬出来用就可以了!

#pragma once
#include"shared.h"
// Single-level array
template <int BITS>
class TCMalloc_PageMap1 {
private:
  static const int LENGTH = 1 << BITS;
  void** array_;
public:
  typedef uintptr_t Number;
  //explicit TCMalloc_PageMap1(void* (*allocator)(size_t)) {
  explicit TCMalloc_PageMap1() {
    //array_ = reinterpret_cast<void**>((*allocator)(sizeof(void*) << BITS));
    size_t size = sizeof(void*) << BITS;
    size_t alignSize = AlignmentRule::_AlignUp(size, 1 << PAGE_SHIFT);
    array_ = (void**)SystemAlloc(alignSize >> PAGE_SHIFT);
    memset(array_, 0, sizeof(void*) << BITS);
  }
  // Return the current value for KEY.  Returns NULL if not yet set,
  // or if k is out of range.
  void* get(Number k) const {
    if ((k >> BITS) > 0) {
      return NULL;
    }
    return array_[k];
  }
  // REQUIRES "k" is in range "[0,2^BITS-1]".
  // REQUIRES "k" has been ensured before.
  // Sets the value 'v' for key 'k'.
  void set(Number k, void* v) {
    array_[k] = v;
  }
};

之后将所有使用unordered_map的地方都替换成基数树的get和set函数即可!现在我们再来测试一下整个项目的性能如何:

使用基数树后,整个效率就比malloc快了!


5. 项目的缺陷分析

本项目看似每一步都做的天衣无缝,申请

和释放内存一层一层不断递进,但是它有

一个致命的缺陷,那就是内存泄漏问题:

bug出现的情景:

假设线程缓存的K号桶中有10个小块儿内存挂在桶上,此时K号桶向中心缓存申请的小块儿内存个数是7个,小于了桶中小块儿内存的个数,此时会将线程缓存中的7个小块儿内存还给中心缓存,那么也就还剩下三个小块儿内存在桶中没有被还回去,此时如果没有线程来这个桶中申请或释放内存,那么这三块儿内存就会一直挂在桶上,既无法释放它,又失去了对它的控制从而造成内存泄漏!

解决bug的方式:

博主本人比较推荐的方式就是在每次使用完内存池后,手动调用一个释放内存的函数对每一个桶进行遍历,来释放还没有被使用的小块儿内存


6. 项目总结

高并发内存池项目到这里就结项了,

三层缓存结构设计的非常之巧妙,做

这个项目为了去解决某个问题,而是

去学习别人的优秀的,先进的思想


相关文章
|
4天前
|
人工智能 前端开发 测试技术
探索软件测试中的自动化框架选择与优化策略####
本文深入剖析了当前主流的自动化测试框架,通过对比分析各自的优势、局限性及适用场景,为读者提供了一套系统性的选择与优化指南。文章首先概述了自动化测试的重要性及其在软件开发生命周期中的位置,接着逐一探讨了Selenium、Appium、Cypress等热门框架的特点,并通过实际案例展示了如何根据项目需求灵活选用与配置框架,以提升测试效率和质量。最后,文章还分享了若干最佳实践和未来趋势预测,旨在帮助测试工程师更好地应对复杂多变的测试环境。 ####
19 4
|
9天前
|
机器学习/深度学习 前端开发 测试技术
探索软件测试中的自动化测试框架选择与优化策略####
本文深入探讨了在当前软件开发生命周期中,自动化测试框架的选择对于提升测试效率、保障产品质量的重要性。通过分析市场上主流的自动化测试工具,如Selenium、Appium、Jest等,结合具体项目需求,提出了一套系统化的选型与优化策略。文章首先概述了自动化测试的基本原理及其在现代软件开发中的角色变迁,随后详细对比了各主流框架的功能特点、适用场景及优缺点,最后基于实际案例,阐述了如何根据项目特性量身定制自动化测试解决方案,并给出了持续集成/持续部署(CI/CD)环境下的最佳实践建议。 --- ####
|
1月前
|
Web App开发 前端开发 JavaScript
探索Python科学计算的边界:利用Selenium进行Web应用性能测试与优化
【10月更文挑战第6天】随着互联网技术的发展,Web应用程序已经成为人们日常生活和工作中不可或缺的一部分。这些应用不仅需要提供丰富的功能,还必须具备良好的性能表现以保证用户体验。性能测试是确保Web应用能够快速响应用户请求并处理大量并发访问的关键步骤之一。本文将探讨如何使用Python结合Selenium来进行Web应用的性能测试,并通过实际代码示例展示如何识别瓶颈及优化应用。
99 5
|
1月前
|
缓存 监控 算法
软件测试中的性能瓶颈分析与优化策略
【10月更文挑战第6天】 性能测试是确保软件系统在高负载条件下稳定运行的重要手段。本文将深入探讨性能测试的常见瓶颈,包括硬件资源、网络延迟和代码效率等问题。通过具体案例分析,我们将展示如何识别并解决这些问题,从而提升软件的整体性能。最后,文章还将分享一些实用的性能优化技巧,帮助读者在日常开发和测试中更好地应对性能挑战。
82 3
|
1月前
|
运维
【运维基础知识】用dos批处理批量替换文件中的某个字符串(本地单元测试通过,部分功能有待优化,欢迎指正)
该脚本用于将C盘test目录下所有以t开头的txt文件中的字符串“123”批量替换为“abc”。通过创建批处理文件并运行,可实现自动化文本替换,适合初学者学习批处理脚本的基础操作与逻辑控制。
134 56
|
9天前
|
缓存 监控 测试技术
全网最全压测指南!教你如何测试和优化系统极限性能
大家好,我是小米。本文将介绍如何在实际项目中进行性能压测和优化,包括单台服务器和集群压测、使用JMeter、监控CPU和内存使用率、优化Tomcat和数据库配置等方面的内容,帮助你在高并发场景下提升系统性能。希望这些实战经验能助你一臂之力!
24 3
|
11天前
|
网络协议 关系型数据库 应用服务中间件
【项目场景】请求数据时测试环境比生产环境多花了1秒是怎么回事?
这是一位粉丝(谢同学)给V哥的留言,描述了他在优化系统查询时遇到的问题:测试环境优化达标,但生产环境响应时间多出1秒。通过抓包分析,发现MySQL请求和响应之间存在500毫秒的延迟,怀疑是网络传输开销。V哥给出了以下优化建议:
|
1月前
|
测试技术
自动化测试项目学习笔记(五):Pytest结合allure生成测试报告以及重构项目
本文介绍了如何使用Pytest和Allure生成自动化测试报告。通过安装allure-pytest和配置环境,可以生成包含用例描述、步骤、等级等详细信息的美观报告。文章还提供了代码示例和运行指南,以及重构项目时的注意事项。
170 1
自动化测试项目学习笔记(五):Pytest结合allure生成测试报告以及重构项目
|
1月前
|
测试技术 Python
自动化测试项目学习笔记(四):Pytest介绍和使用
本文是关于自动化测试框架Pytest的介绍和使用。Pytest是一个功能丰富的Python测试工具,支持参数化、多种测试类型,并拥有众多第三方插件。文章讲解了Pytest的编写规则、命令行参数、执行测试、参数化处理以及如何使用fixture实现测试用例间的调用。此外,还提供了pytest.ini配置文件示例。
26 2
|
1月前
|
测试技术 Python
自动化测试项目学习笔记(二):学习各种setup、tearDown、断言方法
本文主要介绍了自动化测试中setup、teardown、断言方法的使用,以及unittest框架中setUp、tearDown、setUpClass和tearDownClass的区别和应用。
61 0
自动化测试项目学习笔记(二):学习各种setup、tearDown、断言方法

热门文章

最新文章