【AI Agent系列】【阿里AgentScope框架】5. Pipeline模块的组合使用及Pipeline模块总结

简介: 【AI Agent系列】【阿里AgentScope框架】5. Pipeline模块的组合使用及Pipeline模块总结

大家好,我是 同学小张,持续学习C++进阶知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。


前面咱们已经深入学习了AgentScope框架中Pipeline模块的使用和实现原理,本文来总结一下这些Pipeline,以及探索一下各种Pipeline的组合用法。

0. 前置推荐阅读

本文参考:https://modelscope.github.io/agentscope/zh_CN/tutorial/202-pipeline.html

1. Pipeline的使用方式总结

1.1 两种Pipeline分装

从前面的文章可以看出,AgentScope提供了两种Pipeline的使用方式,分别为类类型的Pipeline和函数式的Pipeline

以顺序式Pipeline为例,你既可以使用 SequentialPipeline 这种类类型的Pipeline

# 实例化并调用
pipeline = SequentialPipeline([agent1, agent2, agent3])
x = pipeline(x)

又可以使用 sequentialpipeline 这种函数式的Pipeline

# 直接调用
x = sequentialpipeline([agent1, agent2, agent3], x)

1.2 内置Pipeline类型一览

类类型Pipeline 函数式Pipeline 描述
SequentialPipeline sequentialpipeline 按顺序执行一系列运算符,将一个运算符的输出作为下一个运算符的输入。
IfElsePipeline ifelsepipeline 实现条件逻辑,如果条件为真,则执行一个运算符;如果条件为假,则执行另一个运算符。
SwitchPipeline switchpipeline 实现分支选择,根据条件的结果从映射集中执行一个运算符。
ForLoopPipeline forlooppipeline 重复执行一个运算符,要么达到设定的迭代次数,要么直到满足指定的中止条件。
WhileLoopPipeline whilelooppipeline 只要给定条件保持为真,就持续执行一个运算符。
- placeholder 在流控制中不需要任何操作的分支,如 if-else/switch 中充当占位符。

1.3 Pipeline模块存在的意义

提供了一种多智能体间交互流程的控制逻辑封装,简化了代码。

下面是官方文档中展示的使用Pipeline和不使用Pipeline的代码对比:

可以看到,它简化了代码,其实也就是将原本需要用户写的控制语句,封装到了Pipeline中,省掉的这部分代码,与Pipeline中的实现源码基本一致。

以上示例省掉的那简单的几行控制逻辑可能看不出多大的作用,但是当逻辑复杂之后,这个Pipeline的作用就会显现出来。

2. Pipeline的组合使用示例

from agentscope.pipelines import SequentialPipeline, IfElsePipeline
# 创建一个按顺序执行智能体的 Pipeline
pipe1 = SequentialPipeline([agent1, agent2, agent3])
# 创建一个条件执行智能体的 Pipeline
pipe2 = IfElsePipeline(condition, agent4, agent5)
# 创建一个按顺序执行 pipe1 和 pipe2 的 Pipeline
pipe3 = SequentialPipeline([pipe1, pipe2])
# 调用 Pipeline
x = pipe3(x)

以上示例代码中,首先创建了一个顺序执行的Pipeline,然后创建了一个条件Pipeline,最后通过顺序Pipeline来执行前面的两个Pipeline。这样就实现了agentPipeline以及各类Pipeline的组合使用。

所以,你也看到了,Pipeline不光能传递进去一堆 agent,还能传递进去一堆 pipeline。为什么?因为Pipeline接收的实际是一堆Operator类型,只要继承了这个类型,都可以使用Pipeline

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,持续学习C++进阶知识AI大模型应用实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

目录
打赏
0
1
1
0
20
分享
相关文章
模型手动绑骨3天,AI花3分钟搞定!UniRig:清华开源通用骨骼自动绑定框架,助力3D动画制作
UniRig是清华大学与VAST联合研发的自动骨骼绑定框架,基于自回归模型与交叉注意力机制,支持多样化3D模型的骨骼生成与蒙皮权重预测,其创新的骨骼树标记化技术显著提升动画制作效率。
424 27
模型手动绑骨3天,AI花3分钟搞定!UniRig:清华开源通用骨骼自动绑定框架,助力3D动画制作
让AI单次生成4万字!WriteHERE:开源AI长文写作框架,单次生成超长文本,小说报告一键搞定!
WriteHERE是基于异质递归规划技术的开源AI写作框架,能动态分解写作任务并管理任务依赖关系,支持单次生成超过4万字的专业报告。
230 2
让AI单次生成4万字!WriteHERE:开源AI长文写作框架,单次生成超长文本,小说报告一键搞定!
谷歌开源多智能体开发框架 Agent Development Kit:百行代码构建复杂AI代理,覆盖整个开发周期!
谷歌开源的Agent Development Kit(ADK)是首个代码优先的Python工具包,通过多智能体架构和灵活编排系统,支持开发者在百行代码内构建复杂AI代理,提供预置工具库与动态工作流定义能力。
472 3
谷歌开源多智能体开发框架 Agent Development Kit:百行代码构建复杂AI代理,覆盖整个开发周期!
设计师集体破防!UNO:字节跳动创新AI图像生成框架,多个参考主体同框生成,位置/材质/光影完美对齐
UNO是字节跳动开发的AI图像生成框架,通过渐进式跨模态对齐和通用旋转位置嵌入技术,解决了多主体场景下的生成一致性问题。该框架支持单主体特征保持与多主体组合生成,在虚拟试穿、产品设计等领域展现强大泛化能力。
216 4
设计师集体破防!UNO:字节跳动创新AI图像生成框架,多个参考主体同框生成,位置/材质/光影完美对齐
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
MCP服务器通过提供资源、工具、提示模板三大能力,推动AI实现多轮交互与实体操作。当前生态包含Manus、OpenManus等项目,阿里等企业积极合作,Cursor等工具已集成MCP市场。本文以贪吃蛇游戏为例,演示MCP Server实现流程:客户端连接服务端获取能力集,AI调用工具(如start_game、get_state)控制游戏,通过多轮交互实现动态操作,展示MCP在本地实践中的核心机制与挑战。
437 39
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
341 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
AI界的"翻译官":ONNX如何让各框架模型和谐共处
还在为不同框架间的模型转换头疼?ONNX让你在PyTorch训练的模型可以无缝在TensorFlow部署,甚至能让模型在手机上飞速运行。本文带你了解这个AI领域的'瑞士军刀',轻松实现跨平台高性能模型部署。
166 12
破解生成式AI认知边界:框架思维引擎如何重塑产业智能化未来
该内容深入解析了核心技术架构,涵盖思维链强化系统(DTT)、认知框架建模体系和实时纠偏算法体系。DTT通过多级问题拆解、混合精度推理及分布式验证,大幅提升复杂问题处理能力;认知框架结合知识图谱与逻辑推理,实现精准医疗诊断等应用;实时纠偏算法则通过多级验证机制保障事实与逻辑准确性。整体架构分应用层、框架层和基础层,支持高效、可信的跨领域适配。技术创新体现在混合计算加速、持续学习机制等方面,显著优于传统模型,在事实准确性、逻辑连续性及响应速度上优势明显。
105 28

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问