【AI Agent系列】【阿里AgentScope框架】4. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 循环结构

简介: 【AI Agent系列】【阿里AgentScope框架】4. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 循环结构
  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


前面我们已经初步学会了使用AgentScope中的Pipeline模块,并深入源码,阅读了其中的顺序结构Pipeline和条件分支Pipeline的实现代码。今天,我们来学习另一种经典的Pipeline结构 - 循环结构Pipeline。同样深入源码,了解其背后的实现逻辑。

目前AgentScope还处于快速迭代阶段,本文源码版本为:Successfully installed agentscope-0.0.4a0

0. 推荐前置阅读

(1)Pipeline入门 & 顺序结构Pipeline源码详解:【AI Agent系列】【阿里AgentScope框架】2. Pipeline模块入门:使用Pipeline模块实现最简单的多智能体交互

(2)Pipeline基类 & 条件结构Pipeline源码详解:【AI Agent系列】【阿里AgentScope框架】3. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 顺序结构与条件分支

1. ForLoopPipeline

这个Pipeline用来实现类似编程语言中的 for 循环结构

1.1 初始化

class ForLoopPipeline(PipelineBase):
    def __init__(
        self,
        loop_body_operators: Operators,
        max_loop: int,
        break_func: Callable[[dict], bool] = lambda _: False,
    ):
        self.loop_body_operators = loop_body_operators
        self.max_loop = max_loop
        self.break_func = break_func
        self.participants = [self.loop_body_operators]
    def __call__(self, x: Optional[dict] = None) -> dict:
        return forlooppipeline(
            loop_body_operators=self.loop_body_operators,
            max_loop=self.max_loop,
            break_func=self.break_func,
            x=x,
        )

该Pipeline的初始化接收三个参数:

  • loop_body_operators:需要循环的operators
  • max_loop:最大循环次数
  • break_func:跳出循环的条件

1.2 实现原理

重写__call__函数,调用了 forlooppipeline 函数:

def forlooppipeline(
    loop_body_operators: Operators,
    max_loop: int,
    break_func: Callable[[dict], bool] = lambda _: False,
    x: Optional[dict] = None,
) -> dict:
    for _ in range(max_loop):
        # loop body
        x = _operators(loop_body_operators, x)
        # check condition
        if break_func(x):
            break
    return x  # type: ignore[return-value]

实现原理比较简单,一个for循环,for循环中为 x = _operators(loop_body_operators, x),关于 _operators函数,我们在上篇文章已经看过源码,它就是将 loop_body_operators 执行 sequentialpipeline顺序结构。

然后if break_func(x)语句,用来判断是否提前到达了停止条件,如果到达了,则直接跳出循环。

2. WhileLoopPipeline

这个Pipeline用来实现类似编程语言中的 while 循环结构。

1.1 初始化

class WhileLoopPipeline(PipelineBase):
    def __init__(
        self,
        loop_body_operators: Operators,
        condition_func: Callable[[int, dict], bool] = lambda _, __: False,
    ):
        self.condition_func = condition_func
        self.loop_body_operators = loop_body_operators
        self.participants = [self.loop_body_operators]
    def __call__(self, x: Optional[dict] = None) -> dict:
        return whilelooppipeline(
            loop_body_operators=self.loop_body_operators,
            condition_func=self.condition_func,
            x=x,
        )

该Pipeline的初始化接收两个参数:

  • loop_body_operators:需要循环的operators
  • condition_func:跳出循环的条件

1.2 实现原理

重写__call__函数,调用了 whilelooppipeline 函数:

def whilelooppipeline(
    loop_body_operators: Operators,
    condition_func: Callable[[int, Any], bool] = lambda _, __: False,
    x: Optional[dict] = None,
) -> dict:
    i = 0
    while condition_func(i, x):
        # loop body
        x = _operators(loop_body_operators, x)
        # check condition
        i += 1
    return x  # type: ignore[return-value]

实现原理也比较简单,一个while循环,进入while循环的条件是 condition_func。循环中为 x = _operators(loop_body_operators, x),即将 loop_body_operators 执行 sequentialpipeline顺序结构。

里面的 i 变量,没看懂其存在的意义是什么,只是用来计数吗?但是又没有最大循环次数设置进来,这个 i 变量也没有传递出去。

3. 总结

本文我们学习了AgentScope框架Pipeline模块中的两种循环Pipeline,其实现原理都是比较简单的,简单理解下,可以将循环内的operators理解成一系列函数,这些函数放在了for循环或while循环中。有过一点编程经验的同学相信很容易理解。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
111 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
DiffSensei 是一个由北京大学、上海AI实验室及南洋理工大学共同推出的AI漫画生成框架,能够生成可控的黑白漫画面板。该框架整合了基于扩散的图像生成器和多模态大型语言模型(MLLM),支持多角色控制和精确布局控制,适用于漫画创作、个性化内容生成等多个领域。
69 18
DiffSensei:AI 漫画生成框架,能生成内容可控的黑白漫画面板,支持多角色和布局控制
|
5天前
|
机器学习/深度学习 人工智能
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
Leffa 是 Meta 开源的图像生成框架,通过引入流场学习在注意力机制中精确控制人物的外观和姿势。该框架不增加额外参数和推理成本,适用于多种扩散模型,展现了良好的模型无关性和泛化能力。
39 11
Leffa:Meta AI 开源精确控制人物外观和姿势的图像生成框架,在生成穿着的同时保持人物特征
|
10天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
93 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
11天前
|
人工智能 安全 PyTorch
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
SPDL是Meta AI推出的开源高性能AI模型数据加载解决方案,基于多线程技术和异步事件循环,提供高吞吐量、低资源占用的数据加载功能,支持分布式系统和主流AI框架PyTorch。
44 10
SPDL:Meta AI 推出的开源高性能AI模型数据加载解决方案,兼容主流 AI 框架 PyTorch
|
7天前
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
35 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
5天前
|
机器学习/深度学习 人工智能 算法
AI框架的赢者法则:生态繁荣的昇思MindSpore,成为大模型时代的新选择
2024年被视为大模型应用的元年。昇思MindSpore AI框架凭借其强大的开源社区和技术创新,在全球范围内迅速崛起。截至2024年11月,该框架的下载量已超过1100万次,覆盖130多个国家和地区的2400多个城市,拥有3.7万名贡献者。昇思MindSpore不仅在人才培养和社区治理方面表现出色,还在大模型的开发、训练和应用中发挥了关键作用,支持了50多个主流大模型,覆盖15个行业。随着其市场份额预计达到30%,昇思MindSpore正逐步成为行业共识,推动大模型在各领域的广泛应用。
32 12
|
3天前
|
人工智能 计算机视觉
幻觉不一定有害,新框架用AI的幻觉优化图像分割技术
在图像分割领域,传统方法依赖大量手动标注数据,效率低下且难以适应复杂场景。为解决这一问题,研究人员提出了“任务通用可提示分割”方法,利用多模态大型语言模型(MLLM)生成实例特定提示。然而,MLLM常出现幻觉,影响分割精度。为此,研究团队开发了“Prompt-Mask Cycle”(ProMaC)框架,通过迭代生成和验证提示及掩码,有效利用幻觉信息,提高了分割精度和效率。实验结果表明,ProMaC在多个基准数据集上表现出色,为图像分割技术的发展提供了新思路。
15 6
|
6天前
|
人工智能 安全 算法
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
掌握多智能体系统,🐫 CAMEL-AI Workshop & 黑客马拉松即将启航!
|
3天前
|
机器学习/深度学习 人工智能 算法
【AI系统】AI 框架之争
本文介绍了AI框架在数学上对自动微分的表达和处理,以及其在多线程算子加速、GPU/NPU支持、代码编译优化等方面的技术挑战。文章详细梳理了AI框架的发展历程,从萌芽阶段到深化阶段,探讨了不同阶段的关键技术和代表性框架。同时,文章展望了AI框架的未来趋势,包括全场景支持、易用性提升、大规模分布式支持和科学计算融合。
22 0
下一篇
DataWorks