【AI Agent系列】【阿里AgentScope框架】3. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 顺序结构与条件分支

简介: 【AI Agent系列】【阿里AgentScope框架】3. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 顺序结构与条件分支
  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


上篇文章(【AI Agent系列】【阿里AgentScope框架】2. Pipeline模块入门:使用Pipeline模块实现最简单的多智能体交互)中我们简单使用了一下AgentScope的Pipeline模块,方便地实现了一个多智能体交互应用。今天我们来深入Pipeline的源码,来看下AgentScope都提供了哪些类型的Pipeline,以及它的实现原理是什么。

0. Pipeline概念简介

我的个人简单理解:AgentScope为了方便大家对智能体间交互逻辑的编排,特地封装了 Pipeline 模块,其中包含了一系列地 Pipeline ,就像编程语言中的控制结构:顺序结构、条件分支、循环结构等。利用这些 Pipeline ,大家可以很方便地实现多智能体间的交互逻辑控制。

1. Pipeline的基类:PipelineBase

class PipelineBase(Operator):
    r"""Base interface of all pipelines.
    The pipeline is a special kind of operator that includes
    multiple operators and the interaction logic among them.
    """
    def __init__(self) -> None:
        self.participants: List[Any] = []
    @abstractmethod
    def __call__(self, x: Optional[dict] = None) -> dict:
        """Define the actions taken by this pipeline.
        Args:
            x (Optional[`dict`], optional):
                Dialog history and some environment information
        Returns:
            `dict`: The pipeline's response to the input.
        """

基类只是实现了一个Pipeline的基本框架,所有类型的Pipeline都继承自这个基类,然后重写自己的__call__函数。

从这个基类的说明中也可以看到AgentScope对Pipeline的定义:The pipeline is a special kind of operator that includes multiple operators and the interaction logic among them.。Pipeline组合了一系列的operators和这些operators之间的交互逻辑。所谓的operators,其实就是我们所认识的Agent。

2. SequentialPipeline

这个Pipeline用来实现类似编程语言中的顺序执行结构。上篇文章中已经写过其源码了,所以在这里不再展开,感兴趣的可以去看一下:【AI Agent系列】【阿里AgentScope框架】2. Pipeline模块入门:使用Pipeline模块实现最简单的多智能体交互

3. IfElsePipeline

这个Pipeline用来实现类似编程语言中的 if-else 分支结构。

3.1 初始化参数

class IfElsePipeline(PipelineBase):
    def __init__(
        self,
        condition_func: Callable[[dict], bool],
        if_body_operators: Operators,
        else_body_operators: Operators = placeholder,
    ) -> None:
        self.condition_func = condition_func
        self.if_body_operator = if_body_operators
        self.else_body_operator = else_body_operators
        self.participants = [self.if_body_operator] + [self.else_body_operator]
    def __call__(self, x: Optional[dict] = None) -> dict:
        return ifelsepipeline(
            condition_func=self.condition_func,
            if_body_operators=self.if_body_operator,
            else_body_operators=self.else_body_operator,
            x=x,
        )

其初始化接收三个参数,比较好理解:

  • condition_func:判断条件
  • if_body_operators:满足判断条件时执行的Agent
  • else_body_operators:不满足判断条件时执行的Agent

3.2 实现原理

重写__call__函数,调用了 ifelsepipeline 函数:

def ifelsepipeline(
    condition_func: Callable,
    if_body_operators: Operators,
    else_body_operators: Operators = placeholder,
    x: Optional[dict] = None,
) -> dict:
    if condition_func(x):
        return _operators(if_body_operators, x)
    else:
        return _operators(else_body_operators, x)

里面 if condition_func(x) 来判断是否满足设置的判断条件,然后选择执行 if_body_operators 还是 else_body_operators

这里的 if_body_operators 或者 else_body_operators 可以是一系列的 operators,通过 _operators函数来进行判断和执行:

def _operators(operators: Operators, x: Optional[dict] = None) -> dict:
    """Syntactic sugar for executing a single operator or a sequence of
    operators."""
    if isinstance(operators, Sequence):
        return sequentialpipeline(operators, x)
    else:
        return operators(x)

从这个函数的实现可以看到,如果operators是一系列operator,则会对它们执行 sequentialpipeline 顺序结构

4. SwitchPipeline

这个Pipeline用来实现类似编程语言中的 switch-case 分支结构。

4.1 初始化参数

class SwitchPipeline(PipelineBase):
    def __init__(
        self,
        condition_func: Callable[[dict], Any],
        case_operators: Mapping[Any, Operators],
        default_operators: Operators = placeholder,
    ) -> None:
        self.condition_func = condition_func
        self.case_operators = case_operators
        self.default_operators = default_operators
        self.participants = list(self.case_operators.values()) + [
            self.default_operators,
        ]
    def __call__(self, x: Optional[dict] = None) -> dict:
        return switchpipeline(
            condition_func=self.condition_func,
            case_operators=self.case_operators,
            default_operators=self.default_operators,
            x=x,
        )

该Pipeline的初始化接收三个参数:

  • condition_func:判断条件
  • case_operators:满足case条件时执行的Agent,注意,这里的case_operators是个Mapping映射列表,key为case条件,value为该case下需要执行的operators
  • default_operators:不满足任何一个case条件时执行的Agent

4.2 实现原理

重写__call__函数,调用了 switchpipeline 函数:

def switchpipeline(
    condition_func: Callable[[Any], Any],
    case_operators: Mapping[Any, Operators],
    default_operators: Operators = placeholder,
    x: Optional[dict] = None,
) -> dict:
    target_case = condition_func(x)
    if target_case in case_operators:
        return _operators(case_operators[target_case], x)
    else:
        return _operators(default_operators, x)

首先是 target_case = condition_func(x),根据判断条件找出当前的case条件,然后根据case条件找出需要执行的operators(case_operators[target_case]),通过 _operators 函数来进行顺序执行。

5. 总结

今天这篇文章我们主要通过阅读源码,学习了AgentScope中Pipeline模块的基类、顺序Pipeline和条件Pipeline的实现。所谓的顺序Pipeline就是将Agent按顺序执行,消息按顺序传递。条件Pipeline就是用户给出判定条件,以及每种条件下应该运行的Agents,然后在满足某种条件的时候顺序执行该条件下的Agents。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
8天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
19 3
|
9天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
50 4
|
14天前
|
存储 人工智能 SEO
全开源免费AI网址导航网站源码
Aigotools 可以帮助用户快速创建和管理导航站点,内置站点管理和自动收录功能,同时提供国际化、SEO、多种图片存储方案。让用户可以快速部署上线自己的导航站。
33 1
|
27天前
|
人工智能 安全 决策智能
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
|
21天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
153 6
|
30天前
|
人工智能 开发框架 Java
总计 30 万奖金,Spring AI Alibaba 应用框架挑战赛开赛
Spring AI Alibaba 应用框架挑战赛邀请广大开发者参与开源项目的共建,助力项目快速发展,掌握 AI 应用开发模式。大赛分为《支持 Spring AI Alibaba 应用可视化调试与追踪本地工具》和《基于 Flow 的 AI 编排机制设计与实现》两个赛道,总计 30 万奖金。
|
1月前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
近期,阿里云重磅发布了首款面向 Java 开发者的开源 AI 应用开发框架:Spring AI Alibaba(项目 Github 仓库地址:alibaba/spring-ai-alibaba),Spring AI Alibaba 项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。本文将详细介绍 Spring AI Alibaba 的核心特性,并通过「智能机票助手」的示例直观的展示 Spring AI Alibaba 开发 AI 应用的便利性。示例源
|
1月前
|
人工智能 算法 决策智能
面向软件工程的AI智能体最新进展,复旦、南洋理工、UIUC联合发布全面综述
【10月更文挑战第9天】近年来,基于大型语言模型(LLM)的智能体在软件工程领域展现出显著成效。复旦大学、南洋理工大学和伊利诺伊大学厄巴纳-香槟分校的研究人员联合发布综述,分析了106篇论文,探讨了这些智能体在需求工程、代码生成、静态代码检查、测试、调试及端到端软件开发中的应用。尽管表现出色,但这些智能体仍面临复杂性、性能瓶颈和人机协作等挑战。
78 1
|
3月前
|
存储 人工智能
|
7天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题

热门文章

最新文章