【C++进阶(二)】STL大法--vector的深度剖析以及模拟实现

简介: 【C++进阶(二)】STL大法--vector的深度剖析以及模拟实现

1. 前言

和string的学习不同

vector即要掌握它的用法

更要会自己去实现一个vector

本章重点:

熟悉STL库中vector的接口函数
自己实现一个简易vector类
本章只实现容量相关函数
和构造,析构,拷贝构造函数

注:vector其实就是顺序容器

string类只用考虑存储字符

然而vector中可以存储任一类型

所以vector的自我实现需要用模板


2. 熟悉vector的接口函数

还是借助老朋友:cplusplus来查阅文档

库中的vector的模板参数有两个

后一个是内存池,用来提升空间利用效率

对于现阶段的学习而言可有可无


2.1 vector的构造与拷贝构造

常见的构造有:

vector<int> v1;
vector<int> v2(10,1);
vector<int> v3(v2);

v2:构造并初始化10个值为1的顺序表

vector可以用迭代器区间初始化:

string str("abcdefg");
vector<string> vv(str.begin(),str.end());

2.2 vector迭代器的使用

和string一样,vector有正向和反向
两种迭代器,且使用方法和string相同

vector<int> vv{1,2,3,4,5,6};
vector<int>::iterator it = vv.begin();
while(it!=vv.end())
{
  cout<<*it;
  it++;
}

2.3 vector空间相关函数

vector的空间相关的函数

和string的机会一模一样

如果你看了文档还不懂的话

可以先阅读此篇文章:string接口函数


2.4 vector的增删查改

push_back和pop_back

都是老朋友了,这里就不多说了

在介绍insert和erase之前

先来了解几个算法库的函数


2.41 find,swap和sort

这三个函数都在头文件:algorithm

find函数:参数是一段迭代器区间
以及在此区间你需要查找的值
找到后返回这个值对应的迭代器位置
若找不到,则返回迭代器last

find的使用:

vector<int> vv{1,2,3,4,5,6,7,8,9};
auto pos = find(vv.begin(),vv.end(),5);
cout<<*pos;

注:使用auto是为了简写迭代器也可以用

vector< int >::iterator替代

swap想必是大家的常客了

这里给它个面子,就不介绍它了

sort非常方便,它内部实现是快排

我们只需要传一个迭代器区间

就可以将整个区间排好序

sort的使用:

vector<int> vv{5,7,3,9,6,4,1,2,8};
sort(vv.begin().vv.end());

2.42 insert和erase

和string不同,vector的insert

的参数pos不是整型,而是迭代器

默认是在pos位置前插入一个数据

insert和find常常配合在一起使用

在整型5前面插入一个100:

vector<int> vv{1,2,3,4,5,6,7,8,9};
auto pos = find(vv.begin(),vv.end(),5);
vv.insert(pos,100);

和string的erase不同,vector

的erase一次只删除一个数据

然而string如果使用缺省值就是

将全部数据删完

vector的erase甚至可以删除一段区间

删除顺序表中值为100的元素

vector<int> vv{1,2,3,4,5,6,7,8,9,100};
auto pos = find(vv.begin(),vv.end(),100);
vv.erase(pos);
//删除一个区间
vv.erase(vv.begin()+2,vv.end()-2);

2.43 随机访问operator[ ]

vector中最喜欢用的是[ ]

它支持随机访问,是否方便

operator[]的使用:

vector<int> vv{1,2,3,4,5,6,7,8,9};
for(int i=0;i<vv.size();i++)
{
  cout<<vv[i]<<" ";
}

3. vector的模拟实现

首先要关注的是成员变量

vector是顺序表,所以和实现C语言

时的顺序表一样,至少有三个参数

  1. 指向一段空间的指针
  2. 空间的有效大小
  3. 空间的实际大小

由于vector的迭代器就是普通指针

所以成员变量的类型其实是迭代器

template<class T>
class vector
{
public:
  typedef T* iterator;
private:
  iterator _start;
  iterator _finish;
  iterator _endof_storage;

这里使用迭代器作为三个参数的类型
是因为:求vector的size和capacity时
可以直接使用finish-start
也就是指针相减求出长度

成员变量和空间的关系:


3.1 vector容量相关函数

上来首先要考虑的容量相关的函数:

  • size
  • capacity
  • empty
  • resize
  • reverse

前三个十分简单:

size_t size() const
{
  return _finish - _start;
}
size_t capacity() const
{
  return _endof_storage - _finish;
}
bool empty() const
{
  return (size()==0);
}

3.11 reverse函数

reverse只会改变capacity的大小
并不会改变size的大小

void reserve(size_t n)
{
  if (n > capacity())
  {
    size_t sz = size();
    T* tmp = new T[n];
    if (_start)
    {
      //memcpy(tmp, _start, sizeof(T)*sz);
      for (size_t i = 0; i < sz; ++i)
      {
        tmp[i] = _start[i];
      }
      delete[] _start;
    }
    _start = tmp;
    _finish = _start + sz;
    _end_of_storage = _start + n;
  }
}

注:当n小于capacity时,不进行扩容

由于C++内存管理的new
无法像C语言的realloc一样原地扩容
所以必须先开辟n个空间,再将数据
拷贝到新空间,且释放旧空间


3.12 resize函数

resize即会改变size大小
也会改变capacity大小

resize要分三种情况:

  1. n大于capacity时
  2. n大于size小于capacity时
  3. n小于size时

它们的解决方案分别是:

  • 直接套用reversezhu
  • 初始有效值不变,在此之后
    初始化新的内容
  • 直接将size缩小到n
void resize(size_t n, const T& val = T())
{
  if (n > capacity())
  {
    reserve(n);
  }
  if (n > size())
  {
    // 初始化填值
    while (_finish < _start + n)
    {
      *_finish = val;
      ++_finish;
    }
  }
  else
  {
    _finish = _start + n;
  }
}

注:参数val=T()使用了匿名对象

C++将内置类型特殊处理过

int/char等等都被升级为了类

所以可以使用int()表示匿名对象

int tmp1 = int();
int tmp2 = int(10);

int的缺省值为0


3.2 vector的构造函数

  1. 首先最简单的无参构造:
vector()
  :_start(nullptr)
  , _finish(nullptr)
  , _end_of_storage(nullptr)
{}
  1. 紧接着是带参的构造函数
    我们跟着STL库的风格走:
vector(size_t n, const T& val = T())
  :_start(nullptr)
  , _finish(nullptr)
  , _end_of_storage(nullptr)
{
  reserve(n);//开辟n个空间
  for (size_t i = 0; i < n; ++i)
  {
    push_back(val);//给初始值赋值
  }
}
  1. 最后是使用迭代器区间来构造
    比如我想在顺序表中存放string类型:
string str("abcdefg");
vector<string> vv(str.begin(),str.end());

此时在模板类中还应该有一个模板

template <class InputIterator>
vector(InputIterator first, InputIterator last)
  :_start(nullptr)
  , _finish(nullptr)
  , _end_of_storage(nullptr)
{
  while (first != last)
  {
    push_back(*first);
    ++first;
  }
}

注:inputiterator取名是模仿STL的
你也可以取任一除了T的名字


3.3 vector的析构函数

vector的析构函数非常简单

只需要将空间释放

并且将各个指针置为空就行了

~vector()
{
  delete[] _start;
  _start = _finish = _end_of_storage = nullptr;
}

3.4 vector的拷贝构造函数

拷贝构造的实现有很多种写法

大家可以先自己尝试一下

vector(const vector<T>& v)
  :_start(nullptr)
  , _finish(nullptr)
  , _endof_storage(nullptr)
  {
    reserve(v.size());
    for (const auto& e : v)
    {
      push_back(e);
    }
  }

4. 总结以及拓展

vector模拟实现的全部代码我将在

下一篇文章中分享给大家

可以发现:STL的神奇之处在于
它把所有接口函数都做了统一化处理
每一个容器的接口函数的使用都相似
但是内部实现被这种封装隐藏起来了
进一步又体现了C++的三大特性:
封装

并且C++实现了所有容器通用的算法库

比如sort和find都只需要传迭代器

然而所有容器都会被迭代器封装

所以一份代码就能实现对不同容器的操作

拓展题目:

熟悉了vector的基本使用

可以尝试解决一下下面几个问题:

留给大家当作小试牛刀了~


🔎 下期预告:迭代器失效和深浅拷贝问题 🔍


相关文章
|
7月前
|
编译器 C++ 容器
【c++丨STL】基于红黑树模拟实现set和map(附源码)
本文基于红黑树的实现,模拟了STL中的`set`和`map`容器。通过封装同一棵红黑树并进行适配修改,实现了两种容器的功能。主要步骤包括:1) 修改红黑树节点结构以支持不同数据类型;2) 使用仿函数适配键值比较逻辑;3) 实现双向迭代器支持遍历操作;4) 封装`insert`、`find`等接口,并为`map`实现`operator[]`。最终,通过测试代码验证了功能的正确性。此实现减少了代码冗余,展示了模板与仿函数的强大灵活性。
177 2
|
7月前
|
存储 算法 C++
【c++丨STL】map/multimap的使用
本文详细介绍了STL关联式容器中的`map`和`multimap`的使用方法。`map`基于红黑树实现,内部元素按键自动升序排列,存储键值对,支持通过键访问或修改值;而`multimap`允许存在重复键。文章从构造函数、迭代器、容量接口、元素访问接口、增删操作到其他操作接口全面解析了`map`的功能,并通过实例演示了如何用`map`统计字符串数组中各元素的出现次数。最后对比了`map`与`set`的区别,强调了`map`在处理键值关系时的优势。
345 73
|
8月前
|
存储 缓存 C++
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
C++ 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C++ 的开发者来说,了解这些容器的基础知识以及它们的特点是迈向高效编程的重要一步。本文将详细介绍 C++ 常用的容器,包括序列容器(`std::vector`、`std::array`、`std::list`、`std::deque`)、关联容器(`std::set`、`std::map`)和无序容器(`std::unordered_set`、`std::unordered_map`),全面解析它们的特点、用法
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
|
7月前
|
存储 算法 C++
【c++丨STL】set/multiset的使用
本文深入解析了STL中的`set`和`multiset`容器,二者均为关联式容器,底层基于红黑树实现。`set`支持唯一性元素存储并自动排序,适用于高效查找场景;`multiset`允许重复元素。两者均具备O(logN)的插入、删除与查找复杂度。文章详细介绍了构造函数、迭代器、容量接口、增删操作(如`insert`、`erase`)、查找统计(如`find`、`count`)及`multiset`特有的区间操作(如`lower_bound`、`upper_bound`、`equal_range`)。最后预告了`map`容器的学习,其作为键值对存储的关联式容器,同样基于红黑树,具有高效操作特性。
287 3
|
8月前
|
存储 算法 C++
【c++丨STL】priority_queue(优先级队列)的使用与模拟实现
本文介绍了STL中的容器适配器`priority_queue`(优先级队列)。`priority_queue`根据严格的弱排序标准设计,确保其第一个元素始终是最大元素。它底层使用堆结构实现,支持大堆和小堆,默认为大堆。常用操作包括构造函数、`empty`、`size`、`top`、`push`、`pop`和`swap`等。我们还模拟实现了`priority_queue`,通过仿函数控制堆的类型,并调用封装容器的接口实现功能。最后,感谢大家的支持与关注。
391 1
|
8月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
4月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
95 0
|
4月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
173 0
|
6月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
186 12
|
7月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
132 16