【AI Agent系列】【LangGraph】0. 快速上手:协同LangChain,LangGraph帮你用图结构轻松构建多智能体应用

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI Agent系列】【LangGraph】0. 快速上手:协同LangChain,LangGraph帮你用图结构轻松构建多智能体应用
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


目前为止,我已经系统学习过AutoGPT和MetaGPT两款智能体框架了。今天来看下另一个多智能体框架:LangGraph。

0. 简介

LangGraph 是在 LangChain 的基础上实现的一个多智能体的运行框架。它扩展了LangChain表达式语言,能够以循环的方式在多个计算步骤中协调多个链(或参与者)。

再详细一点就是:LangChain以及它的表达式语言(LCEL)为开发者构建自定义的链提供了技术支持。从图的角度来看,这种链是有向无环图(DAG)。而在实际的应用场景中,用户会期望构建有环图(cyclic graph)。这就是 LangGraph 存在的意义:帮助用户更好更方便地构建有环图。

LangGraph的核心概念之一是状态。每次图的执行都会创建一个状态,该状态在图中的节点之间传递,每个节点在执行后都会更新此状态。所以,LangGraph呈现的是类似状态机(state machine)的机制。

1. 快速上手

1.1 安装 LangGraph

pip install langgraph

1.2 体验一把 - 上手Demo

from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from langgraph.graph import END, MessageGraph
model = ChatOpenAI(temperature=0)
graph = MessageGraph()
graph.add_node("oracle", model)
graph.add_edge("oracle", END)
graph.set_entry_point("oracle")
runnable = graph.compile()
response = runnable.invoke(HumanMessage("1 + 1 等于几?"))
print(response)

输出结果:

1.3 Demo代码详解

1.3.1 LangGraph 使用步骤解析

小小体验了一把之后,下面我们来看看其基本的用法。

(1)首先创建一个图:graph = MessageGraph()

(2)然后,往图中添加节点:graph.add_node("oracle", model),这个节点的名字叫"oracle",节点的内容是 model,也就是OpenAI大模型的接口封装。

(3)再然后,添加边:graph.add_edge("oracle", END),添加了一条从 “oracle” 到 END 的边。END 是内置的节点,结束的意思。

(4)再然后,添加进入节点:graph.set_entry_point("oracle")

(5)编译图:runnable = graph.compile()complile函数,将图固化下来,就不能再改了。

(6)运行:我们熟悉的 invoke 函数

总结一下步骤:创建图 —> 添加节点 —> 添加边 —> 设置从哪个节点开始运行 —> 编译图 —> 运行。

步骤很清晰,图的生成过程也很简单,就是图的基本元素的创建:节点和边。

1.3.2 从运行结果看 LangGraph 的状态是什么

再看下运行结果(上图),它包含了 HumanMessage 和 AIMessage。这就是所谓的状态传递。输入是HumanMessage,写到状态里传递给 oracle node,然后执行,oracle node返回结果,这个结果更新到状态里,传递给END,END输出最终的状态。

所以,LangGraph 的状态(State)就是一系列 Message 的列表。

1.4 node的形式

上面的node,我们添加的是一个model:graph.add_node("oracle", model)

它其实也可以是一个函数:

def call_oracle(messages: list):
    return model.invoke(message)
graph.add_node("oracle", call_oracle)

1.4.1 node 能不能是一个 Chain ?

思考一个问题:能否用一个Chain作为一个node添加进LangGraph中呢?比如我有下面一个Chain:

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant named {name} who always speaks in pirate dialect"),
    MessagesPlaceholder(variable_name="messages"),
])
chain = prompt | model

我能否把这个chain通过 add_node 添加到图中?就像这样:graph.add_node("oracle", chain)

我的理解:node不能添加一个Chain,因为Chain接收的输入是一个Dict字典类型,而node之间传递的是State,State是一个List,不是Dict。

2. 参考

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
9天前
|
人工智能 缓存 监控
使用LangChain4j构建Java AI智能体:让大模型学会使用工具
AI智能体是大模型技术的重要演进方向,它使模型能够主动使用工具、与环境交互,以完成复杂任务。本文详细介绍如何在Java应用中,借助LangChain4j框架构建一个具备工具使用能力的AI智能体。我们将创建一个能够进行数学计算和实时信息查询的智能体,涵盖工具定义、智能体组装、记忆管理以及Spring Boot集成等关键步骤,并展示如何通过简单的对话界面与智能体交互。
194 1
|
9天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
376 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
12天前
|
人工智能 Java API
构建基于Java的AI智能体:使用LangChain4j与Spring AI实现RAG应用
当大模型需要处理私有、实时的数据时,检索增强生成(RAG)技术成为了核心解决方案。本文深入探讨如何在Java生态中构建具备RAG能力的AI智能体。我们将介绍新兴的Spring AI项目与成熟的LangChain4j框架,详细演示如何从零开始构建一个能够查询私有知识库的智能问答系统。内容涵盖文档加载与分块、向量数据库集成、语义检索以及与大模型的最终合成,并提供完整的代码实现,为Java开发者开启构建复杂AI智能体的大门。
383 58
|
4月前
|
人工智能 自然语言处理 数据挖掘
智能体(AI Agent)开发实战之【LangChain】(三)结合大模型基于RAG实现本地知识库问答优化
智能体(AI Agent)开发实战之【LangChain】(三)结合大模型基于RAG实现本地知识库问答优化
|
4月前
|
数据采集 存储 人工智能
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
|
4月前
|
人工智能 数据库
智能体(AI Agent)开发实战之【LangChain】(四)结合大模型基于RAG实现本地知识库问答和纠错
本文介绍如何基于RAG实现知识库问答系统的输入内容纠错功能。通过加载本地知识库、构建向量数据库,结合大语言模型对输入文本进行检索比对与纠错优化,提升问答准确性。
|
11月前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
1165 62
AI经营|多Agent择优生成商品标题
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
965 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型

热门文章

最新文章