【AI Agent系列】【LangGraph】0. 快速上手:协同LangChain,LangGraph帮你用图结构轻松构建多智能体应用

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI Agent系列】【LangGraph】0. 快速上手:协同LangChain,LangGraph帮你用图结构轻松构建多智能体应用
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


目前为止,我已经系统学习过AutoGPT和MetaGPT两款智能体框架了。今天来看下另一个多智能体框架:LangGraph。

0. 简介

LangGraph 是在 LangChain 的基础上实现的一个多智能体的运行框架。它扩展了LangChain表达式语言,能够以循环的方式在多个计算步骤中协调多个链(或参与者)。

再详细一点就是:LangChain以及它的表达式语言(LCEL)为开发者构建自定义的链提供了技术支持。从图的角度来看,这种链是有向无环图(DAG)。而在实际的应用场景中,用户会期望构建有环图(cyclic graph)。这就是 LangGraph 存在的意义:帮助用户更好更方便地构建有环图。

LangGraph的核心概念之一是状态。每次图的执行都会创建一个状态,该状态在图中的节点之间传递,每个节点在执行后都会更新此状态。所以,LangGraph呈现的是类似状态机(state machine)的机制。

1. 快速上手

1.1 安装 LangGraph

pip install langgraph

1.2 体验一把 - 上手Demo

from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from langgraph.graph import END, MessageGraph
model = ChatOpenAI(temperature=0)
graph = MessageGraph()
graph.add_node("oracle", model)
graph.add_edge("oracle", END)
graph.set_entry_point("oracle")
runnable = graph.compile()
response = runnable.invoke(HumanMessage("1 + 1 等于几?"))
print(response)

输出结果:

1.3 Demo代码详解

1.3.1 LangGraph 使用步骤解析

小小体验了一把之后,下面我们来看看其基本的用法。

(1)首先创建一个图:graph = MessageGraph()

(2)然后,往图中添加节点:graph.add_node("oracle", model),这个节点的名字叫"oracle",节点的内容是 model,也就是OpenAI大模型的接口封装。

(3)再然后,添加边:graph.add_edge("oracle", END),添加了一条从 “oracle” 到 END 的边。END 是内置的节点,结束的意思。

(4)再然后,添加进入节点:graph.set_entry_point("oracle")

(5)编译图:runnable = graph.compile()complile函数,将图固化下来,就不能再改了。

(6)运行:我们熟悉的 invoke 函数

总结一下步骤:创建图 —> 添加节点 —> 添加边 —> 设置从哪个节点开始运行 —> 编译图 —> 运行。

步骤很清晰,图的生成过程也很简单,就是图的基本元素的创建:节点和边。

1.3.2 从运行结果看 LangGraph 的状态是什么

再看下运行结果(上图),它包含了 HumanMessage 和 AIMessage。这就是所谓的状态传递。输入是HumanMessage,写到状态里传递给 oracle node,然后执行,oracle node返回结果,这个结果更新到状态里,传递给END,END输出最终的状态。

所以,LangGraph 的状态(State)就是一系列 Message 的列表。

1.4 node的形式

上面的node,我们添加的是一个model:graph.add_node("oracle", model)

它其实也可以是一个函数:

def call_oracle(messages: list):
    return model.invoke(message)
graph.add_node("oracle", call_oracle)

1.4.1 node 能不能是一个 Chain ?

思考一个问题:能否用一个Chain作为一个node添加进LangGraph中呢?比如我有下面一个Chain:

from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful assistant named {name} who always speaks in pirate dialect"),
    MessagesPlaceholder(variable_name="messages"),
])
chain = prompt | model

我能否把这个chain通过 add_node 添加到图中?就像这样:graph.add_node("oracle", chain)

我的理解:node不能添加一个Chain,因为Chain接收的输入是一个Dict字典类型,而node之间传递的是State,State是一个List,不是Dict。

2. 参考

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
29天前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
383 29
|
1月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
290 1
|
1月前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
297 115
|
1月前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
246 117
|
1月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
2755 41
|
29天前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
368 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
28天前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
892 16
构建AI智能体:一、初识AI大模型与API调用
|
1月前
|
存储 人工智能 前端开发
超越问答:深入理解并构建自主决策的AI智能体(Agent)
如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
283 6
|
1月前
|
人工智能 监控 Java
Spring AI Alibaba实践|后台定时Agent
基于Spring AI Alibaba框架,可构建自主运行的AI Agent,突破传统Chat模式限制,支持定时任务、事件响应与人工协同,实现数据采集、分析到决策的自动化闭环,提升企业智能化效率。
Spring AI Alibaba实践|后台定时Agent
|
2月前
|
分布式计算 测试技术 Spark
科大讯飞开源星火化学大模型、文生音效模型
近期,科大讯飞在魔搭社区(ModelScope)和Gitcode上开源两款模型:讯飞星火化学大模型Spark Chemistry-X1-13B、讯飞文生音频模型AudioFly,助力前沿化学技术研究,以及声音生成技术和应用的探索。
245 2

热门文章

最新文章