【AI大模型应用开发】【LangChain系列】10. 实用技巧:如何使用已经存在的向量数据库作为 Retriever?

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】10. 实用技巧:如何使用已经存在的向量数据库作为 Retriever?
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

0. 背景

我们之前做的所有RAG实践以及LangChain实践,用到向量数据库时,都是临时创建一个向量数据库,然后将加载到的数据写入这个临时的数据库中。最后将临时的数据库作为Retriever去检索。当程序运行结束后,这个数据就被消灭了,下一次运行该程序,又得去拉一遍数据,切分一遍,创建一遍,灌入一遍数据。

类似这篇文章(【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查)中的实现,每次运行程序,以下代码都得重新算一遍:

这种方式在学习阶段是挺方便的,但正常的工程化项目,知识库一般是需要持久化存在的。这样不用重复地去处理数据,保存数据,节省大量的计算资源。

本文来学习下如何将向量数据库持久化存储,并且如何在一个新的工程项目中使用上该向量数据库。

1. 向量数据库持久化存储

我们之前实现的向量数据库代码如下:

vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()

要想将其持久化,只需要传入持久化目录:

vectorstore = Chroma(embedding_function=OpenAIEmbeddings(), persist_directory="./chroma.db")

修改后的完整代码如下:

from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Load, chunk and index the contents of the blog.
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings(), persist_directory="./chroma.db")

运行后,在持久化目录下,会看到对应的数据库文件

2. 使用已有的向量数据库

现在来看下下次运行,如何使用这个已有的向量数据库。

上面我们第一次创建向量数据库,往里面灌入数据时,使用的是 from_documents,这是创建 + 灌入数据。

现在我们不需要灌入数据,那直接用 Chroma 实例化一个对象即可,实例化时传入其所在的路径,同时也要传入 embedding 参数,毕竟在查询时,也要将问题向量化,需要使用这个参数。实例化代码如下:

vectorstore = Chroma(embedding_function=OpenAIEmbeddings(), persist_directory="./chroma.db")

然后在代码中就可以直接用了。使用的示例代码如下:

import bs4
from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
vectorstore = Chroma(embedding_function=OpenAIEmbeddings(), persist_directory="./chroma.db")
# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()
from langchain.tools.retriever import create_retriever_tool
tool = create_retriever_tool(
    retriever,
    "search_agents_answer",
    "Searches and returns context from LLM Powered Autonomous Agents. Answering questions about the agents.",
)
tools = [tool]
from langchain import hub
prompt = hub.pull("hwchase17/openai-tools-agent")
prompt.pretty_print()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0)
from langchain.agents import AgentExecutor, create_openai_tools_agent
agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
result = agent_executor.invoke({"input": "hi, 我是【同学小张】"})
print(result["output"])
result = agent_executor.invoke(
    {
        "input": "What is Task Decomposition?"
    }
)
print("output2: ", result["output"])

运行结果:

这样,我们只需要加载一次网址,灌入一次数据,后面无论运行多少次项目,都不用再重复加载网页数据和灌入向量数据库了。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
13天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
68 12
|
11天前
|
人工智能 安全 数据安全/隐私保护
文档智能 & RAG让AI大模型更懂业务测评
文档智能 & RAG让AI大模型更懂业务
133 73
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
85 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
11天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
5天前
|
人工智能 API Windows
免费部署本地AI大语言模型聊天系统:Chatbox AI + 马斯克grok2.0大模型(简单5步实现,免费且比GPT4.0更好用)
本文介绍了如何部署本地AI大语言模型聊天系统,使用Chatbox AI客户端应用和Grok-beta大模型。通过获取API密钥、下载并安装Chatbox AI、配置模型,最终实现高效、智能的聊天体验。Grok 2大模型由马斯克X-AI发布,支持超长文本上下文理解,免费且易于使用。
33 0
|
13天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
87 15
|
6天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
13天前
|
关系型数据库 MySQL 数据库
数据库数据恢复—MYSQL数据库文件损坏的数据恢复案例
mysql数据库文件ibdata1、MYI、MYD损坏。 故障表现:1、数据库无法进行查询等操作;2、使用mysqlcheck和myisamchk无法修复数据库。
|
17天前
|
SQL 关系型数据库 MySQL
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。
|
25天前
|
关系型数据库 MySQL 数据库
GBase 数据库如何像MYSQL一样存放多行数据
GBase 数据库如何像MYSQL一样存放多行数据
下一篇
DataWorks