【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


目前为止,我们实现的RAG练习中,答案都是全部来源于检索到的文本内容。而检索过程可能在某些情况下是不需要的。

如何优化这个过程,让我们的RAG程序在必要时才去检索,不必要时,直接使用大模型原有数据来回答呢?本文我们一起来学习下。

本文我们将使用 LangChain 的 Agents 模块来将 Retriever 当作工具,让大模型在有必要时才去使用它。

0. 实现 Retriever

首先我们得现有一个Retrivever,才能在有需要时能够进行查询。搭建Retriever的过程就不展开了,前面我们已经做了非常多的练习,具体可以参考这篇文章:【AI大模型应用开发】【LangChain系列】实战案例4:再战RAG问答,提取在线网页数据,并返回生成答案的来源

import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Load, chunk and index the contents of the blog.
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()

1. 实现 Retriever Tool

通过 LangChain 自带的 create_retriever_tool 来将 Retriever 封装成一个可供 Agents 模块调用的 Tool。

create_retriever_tool 在使用过程中,最重要的是第三个参数,这是你这个工具的描述,这个描述相当于一个Prompt,将决定大模型是否会调用这个工具。

from langchain.tools.retriever import create_retriever_tool
tool = create_retriever_tool(
    retriever,
    "search_agents_answer",
    "Searches and returns context from LLM Powered Autonomous Agents. Answering questions about the agents.",
)
tools = [tool]

关于LangChain中 Agents 模块如何定义Tool,详细教程可参考:

【AI大模型应用开发】【LangChain系列】5. 实战LangChain的智能体Agents模块

2. Prompt模板和模型加载

from langchain import hub
prompt = hub.pull("hwchase17/openai-tools-agent")
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0)

这块没有特别注意的,就是将需要的元素都创建好,供后面创建 Agent 使用。

看一眼加载的Prompt模板内容:

  • 小Tips:打印Prompt模板内容,可以使用 prompt.pretty_print() 函数,将打印成上图中比较美观的样子。

3. 创建 Agent 和 Agent 执行器

准备好 llm、tools、prompt之后,创建Agent 和 AgentExecutor

from langchain.agents import AgentExecutor, create_openai_tools_agent
agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

其中 create_openai_tools_agent,是 LangChain 对于使用 OpenAI 工具的Agent的封装:

def create_openai_tools_agent(
    llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate
) -> Runnable:
    """Create an agent that uses OpenAI tools.
    Args:
        llm: LLM to use as the agent.
        tools: Tools this agent has access to.
        prompt: The prompt to use. See Prompt section below for more on the expected
            input variables.

其实现原理,就是将 tools 首先转换成OpenAI格式的工具描述,然后与 OpenAI 大模型进行绑定(源码中的这一句:llm_with_tools = llm.bind(tools=[convert_to_openai_tool(tool) for tool in tools]))。这是 Function Calling 部分的知识,不了解的可以补一下:【AI大模型应用开发】2.1 Function Calling连接外部世界 - 入门与实战(1)

4. 完整代码及运行结果

4.1 运行代码

调用 invoke 接口即可运行。

result = agent_executor.invoke({"input": "hi, 我是【同学小张】"})
print(result["output"])
result = agent_executor.invoke(
    {
        "input": "What is Task Decomposition?"
    }
)
print("output2: ", result["output"])

4.2 完整代码

import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Load, chunk and index the contents of the blog.
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()
from langchain.tools.retriever import create_retriever_tool
tool = create_retriever_tool(
    retriever,
    "search_agents_answer",
    "Searches and returns context from LLM Powered Autonomous Agents. Answering questions about the agents.",
)
tools = [tool]
from langchain import hub
prompt = hub.pull("hwchase17/openai-tools-agent")
prompt.pretty_print()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0)
from langchain.agents import AgentExecutor, create_openai_tools_agent
agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
result = agent_executor.invoke({"input": "hi, 我是【同学小张】"})
print(result["output"])
result = agent_executor.invoke(
    {
        "input": "What is Task Decomposition?"
    }
)
print("output2: ", result["output"])

4.2 运行结果与解释

第一个问题,简单打个招呼,这时候不需要也不能去查文本,应该直接使用大模型自身的能力来回复。

第二个问题,涉及 Agents 相关知识,需要调用 Retriever 去查询相关资料,利用资料去回复。

本文参考教程:https://python.langchain.com/docs/use_cases/question_answering/conversational_retrieval_agents

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
5天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
37 3
|
8天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
39 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
4天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
5天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
12天前
|
人工智能 JSON 自然语言处理
基于文档智能&RAG搭建更懂业务的AI大模型
本文介绍了一种结合文档智能和检索增强生成(RAG)技术,构建强大LLM知识库的方法。通过清洗文档内容、向量化处理和特定Prompt,提供足够的上下文信息,实现对企业级文档的智能问答。文档智能(Document Mind)能够高效解析多种文档格式,确保语义的连贯性和准确性。整个部署过程简单快捷,适合处理复杂的企业文档,提升信息提取和利用效率。
|
9天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
50 4
|
14天前
|
人工智能
热门 新 1024 云上见 AI大模型助力客户对话分析 2000个智能台灯等你来领
热门 新 1024 云上见 AI大模型助力客户对话分析 2000个智能台灯等你来领
53 3
|
14天前
|
机器学习/深度学习 人工智能 算法
AI赋能大学计划·大模型技术与应用实战学生训练营——吉林大学站圆满结营
10月30日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·吉林大学站圆满结营。