【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】实战案例5:用LangChain实现灵活的Agents+RAG,该查时查,不该查时就别查
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


目前为止,我们实现的RAG练习中,答案都是全部来源于检索到的文本内容。而检索过程可能在某些情况下是不需要的。

如何优化这个过程,让我们的RAG程序在必要时才去检索,不必要时,直接使用大模型原有数据来回答呢?本文我们一起来学习下。

本文我们将使用 LangChain 的 Agents 模块来将 Retriever 当作工具,让大模型在有必要时才去使用它。

0. 实现 Retriever

首先我们得现有一个Retrivever,才能在有需要时能够进行查询。搭建Retriever的过程就不展开了,前面我们已经做了非常多的练习,具体可以参考这篇文章:【AI大模型应用开发】【LangChain系列】实战案例4:再战RAG问答,提取在线网页数据,并返回生成答案的来源

import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Load, chunk and index the contents of the blog.
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()

1. 实现 Retriever Tool

通过 LangChain 自带的 create_retriever_tool 来将 Retriever 封装成一个可供 Agents 模块调用的 Tool。

create_retriever_tool 在使用过程中,最重要的是第三个参数,这是你这个工具的描述,这个描述相当于一个Prompt,将决定大模型是否会调用这个工具。

from langchain.tools.retriever import create_retriever_tool
tool = create_retriever_tool(
    retriever,
    "search_agents_answer",
    "Searches and returns context from LLM Powered Autonomous Agents. Answering questions about the agents.",
)
tools = [tool]

关于LangChain中 Agents 模块如何定义Tool,详细教程可参考:

【AI大模型应用开发】【LangChain系列】5. 实战LangChain的智能体Agents模块

2. Prompt模板和模型加载

from langchain import hub
prompt = hub.pull("hwchase17/openai-tools-agent")
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0)

这块没有特别注意的,就是将需要的元素都创建好,供后面创建 Agent 使用。

看一眼加载的Prompt模板内容:

  • 小Tips:打印Prompt模板内容,可以使用 prompt.pretty_print() 函数,将打印成上图中比较美观的样子。

3. 创建 Agent 和 Agent 执行器

准备好 llm、tools、prompt之后,创建Agent 和 AgentExecutor

from langchain.agents import AgentExecutor, create_openai_tools_agent
agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

其中 create_openai_tools_agent,是 LangChain 对于使用 OpenAI 工具的Agent的封装:

def create_openai_tools_agent(
    llm: BaseLanguageModel, tools: Sequence[BaseTool], prompt: ChatPromptTemplate
) -> Runnable:
    """Create an agent that uses OpenAI tools.
    Args:
        llm: LLM to use as the agent.
        tools: Tools this agent has access to.
        prompt: The prompt to use. See Prompt section below for more on the expected
            input variables.

其实现原理,就是将 tools 首先转换成OpenAI格式的工具描述,然后与 OpenAI 大模型进行绑定(源码中的这一句:llm_with_tools = llm.bind(tools=[convert_to_openai_tool(tool) for tool in tools]))。这是 Function Calling 部分的知识,不了解的可以补一下:【AI大模型应用开发】2.1 Function Calling连接外部世界 - 入门与实战(1)

4. 完整代码及运行结果

4.1 运行代码

调用 invoke 接口即可运行。

result = agent_executor.invoke({"input": "hi, 我是【同学小张】"})
print(result["output"])
result = agent_executor.invoke(
    {
        "input": "What is Task Decomposition?"
    }
)
print("output2: ", result["output"])

4.2 完整代码

import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
# Load, chunk and index the contents of the blog.
loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(
        parse_only=bs4.SoupStrainer(
            class_=("post-content", "post-title", "post-header")
        )
    ),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()
from langchain.tools.retriever import create_retriever_tool
tool = create_retriever_tool(
    retriever,
    "search_agents_answer",
    "Searches and returns context from LLM Powered Autonomous Agents. Answering questions about the agents.",
)
tools = [tool]
from langchain import hub
prompt = hub.pull("hwchase17/openai-tools-agent")
prompt.pretty_print()
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0)
from langchain.agents import AgentExecutor, create_openai_tools_agent
agent = create_openai_tools_agent(llm, tools, prompt)
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
result = agent_executor.invoke({"input": "hi, 我是【同学小张】"})
print(result["output"])
result = agent_executor.invoke(
    {
        "input": "What is Task Decomposition?"
    }
)
print("output2: ", result["output"])

4.2 运行结果与解释

第一个问题,简单打个招呼,这时候不需要也不能去查文本,应该直接使用大模型自身的能力来回复。

第二个问题,涉及 Agents 相关知识,需要调用 Retriever 去查询相关资料,利用资料去回复。

本文参考教程:https://python.langchain.com/docs/use_cases/question_answering/conversational_retrieval_agents

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
29天前
|
机器学习/深度学习 数据采集 人工智能
昇腾AI行业案例(七):基于 Conformer 和 Transformer 模型的中文语音识别
欢迎学习《基于 Conformer 和 Transformer 模型的中文语音识别》实验。本案例旨在帮助你深入了解如何运用深度学习模型搭建一个高效精准的语音识别系统,将中文语音信号转换成文字,并利用开源数据集对模型效果加以验证。
52 12
|
1月前
|
存储 机器学习/深度学习 人工智能
昇腾AI行业案例(六):基于 PraNet 的医疗影像分割
欢迎学习《基于 PraNet 的医疗影像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的医疗影像分割系统,专注于息肉分割任务,并利用开源数据集对模型效果加以验证。
33 1
|
1月前
|
机器学习/深度学习 人工智能 算法
昇腾AI行业案例(一):基于AI图像处理的疲劳驾驶检测
在本实验中,您将学习如何使用利用CV(Computer Vision)领域的AI模型来构建一个端到端的疲劳驾驶检测系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
68 3
|
1月前
|
存储 人工智能 数据可视化
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
欢迎学习《基于 DANet 和 Deeplabv3 模型的遥感图像分割》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的遥感地图区域分割系统,并利用开源数据集和昇腾 AI 芯片对模型效果加以验证。
32 0
昇腾AI行业案例(五):基于 DANet 和 Deeplabv3 模型的遥感图像分割
|
1月前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
231 5
|
28天前
|
存储 人工智能 自然语言处理
AI 工程学习 - 三张图说明白什么是 RAG
RAG(检索增强生成)是一种结合信息检索和生成模型的自然语言处理框架,通过引入外部知识库(如文档库、数据库等),增强生成模型的回答准确性与相关性。其核心在于避免模型仅依赖训练数据产生不准确或“幻觉”内容,而是通过实时检索外部资料,确保回答更精准、丰富且上下文相关。RAG的实现包括建立索引(清洗、分割、嵌入存储)和检索生成(计算相似度、选择最优片段、整合提示词模板提交给大模型)。
123 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
昇腾AI行业案例(四):基于 Bert 模型实现文本分类
欢迎学习《昇腾行业应用案例》的“基于 Bert 模型实现文本分类”实验。在本实验中,您将学习如何使用利用 NLP (natural language processing) 领域的AI模型来构建一个端到端的文本系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
42 0
|
1月前
|
人工智能 算法 计算机视觉
昇腾AI行业案例(三):基于 AI 图像处理的铝板缺陷检测
欢迎学习《基于 AI 图像处理的铝板缺陷检测》实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的铝板缺陷检测系统,并利用开源数据集和昇腾 AI 芯片对模型效果加以验证。
50 0
|
1月前
|
机器学习/深度学习 人工智能 算法
昇腾AI行业案例(二):基于 AI 图像处理的安全帽检测
欢迎学习《昇腾行业应用案例》的 “基于 AI 图像处理的安全帽检测” 实验。在本实验中,你将深入了解如何运用计算机视觉(CV)领域的 AI 模型,搭建一个高效精准的安全帽检测系统,并利用开源数据集对模型效果加以验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
57 0
|
16天前
|
人工智能 自然语言处理 搜索推荐
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
95 24
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人

热门文章

最新文章