【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


本文通过一个案例来学习下如何让 LangChain 写代码并自动执行输出结果。

本文案例来自:https://python.langchain.com/docs/expression_language/cookbook/code_writing

0. 完整代码

先来跑通demo代码

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import (
    ChatPromptTemplate,
)
from langchain_experimental.utilities import PythonREPL
from langchain_openai import ChatOpenAI
template = """Write some python code to solve the user's problem. 
Return only python code in Markdown format, e.g.:
```python
....
```"""
prompt = ChatPromptTemplate.from_messages([("system", template), ("human", "{input}")])
model = ChatOpenAI()
def _sanitize_output(text: str):
    _, after = text.split("```python")
    return after.split("```")[0]
chain = prompt | model | StrOutputParser() | _sanitize_output | PythonREPL().run
result = chain.invoke({"input": "whats 2 plus 2"})
print(result)

执行结果:

1. 代码学习

这段代码实现的功能:当接收到用户提问时,通过调用大模型来写Python代码,通过执行Python代码输出Python代码的运行结果。上面的demo中,用户提问2+2等于几,Python程序执行结果为4。

案例很简单,但也有值得学习的地方。

(1)首先是前面的传统chain部分,prompt | model | StrOutputParser 就是将用户提问和系统设定的Prompt给到大模型,然后大模型输出结果,通过StrOutputParser将结果转换成字符串格式。

StrOutputParser 的作用:将大模型的输出转换成字符串格式。如果是LLM的返回,保持原样(LLM的返回本来就是字符串),如果是ChatModel的返回,它会输出.content 中的信息作为结果字符串。

这里面可以重点关注下给系统设定的Prompt:限定了只输出Python代码,并且用Markdown的形式,并且还给了输出格式的例子。最大限度地保证大模型输出地Python代码是可以运行的。

template = """Write some python code to solve the user's problem. 
Return only python code in Markdown format, e.g.:
```python
....
```"""

(2)_sanitize_output 函数,将大模型输出的Markdown格式的Python代码提取出来,其实这里就是去掉前面的 “```python” 和后面的 “```”。所以,前面的Prompt就显得至关重要了,一定将输出格式限制死了,有一点不对就会提取Python代码出错。

(3)PythonREPL().run ,从代码中也能猜出它就是用来在内部运行 Python 程序的,它是LangChain封装的一个用来执行Python代码的类。

run 函数的几个注意点:

  • 参数为完整的要执行的Python代码
  • 其返回结果为 Python 代码中通过 print 函数打印的内容,如下示例代码,print(1+1),才能返回2。
from langchain_experimental.utilities import PythonREPL
python_repl = PythonREPL()
python_repl.run("print(1+1)") # 有返回值,2
python_repl.run("print(1+1)") # 无返回值,空的

本文中demo程序生成的Python代码,有使用 print

看下PythonREPL的源码,原理很简单,就是调用了一下 exec 函数执行代码,然后将标准输出中的内容放到队列中。执行完之后 return queue.get(),将标准输出内容作为结果返回。

所以从源码也可以知道,它不止会返回 print 打印出来的内容,任何输出到标准输出中的信息它都会返回,例如程序报错、警告等。

本文到这里就结束了。通过本文,我们主要是学习了如何让大模型写Python程序并自动执行。其实最大的收获就是知道了有 PythonREPL 这么个东西,更深一点知道了 PythonREPL 的运行原理,后面即使不用LangChain,也能自己写一段类似的功能。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
1月前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
338 121
|
1月前
|
人工智能 人机交互 知识图谱
当AI学会“融会贯通”:多模态大模型如何重塑未来
当AI学会“融会贯通”:多模态大模型如何重塑未来
260 114
|
1月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
248 120
|
28天前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
892 16
构建AI智能体:一、初识AI大模型与API调用
|
2月前
|
SQL 人工智能 自然语言处理
阿里云 CIO 蒋林泉:AI 大模型时代,我们如何用 RIDE 实现 RaaS 的首次落地?
本文整理自阿里云智能集团 CIO 蒋林泉在 AICon 2025 深圳的演讲,分享了阿里云在大模型应用落地中的实践经验。通过多个数字人项目案例,探讨了企业在 AI 应用中的组织转型、业务识别、产品定义与工程落地等关键环节,并提出了 RIDE 方法论(重组、识别、定义、执行),助力企业实现 AI 有效落地。
|
4月前
|
存储 运维 数据挖掘
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
在智能驾驶技术快速发展中,数据成为驱动算法进步的核心。某新能源汽车领军企业基于阿里云Milvus向量数据库构建智能驾驶数据挖掘平台,利用其高性能、可扩展的相似性检索服务,解决了大规模向量数据检索瓶颈问题,显著降低20%以上成本,缩短模型迭代周期,实现从数据采集到场景挖掘的智能化闭环,加速智能驾驶落地应用。
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
|
4月前
|
存储 机器学习/深度学习 缓存
阿里云AirCache技术实现多模态大模型高效推理加速,入选国际顶会ICCV2025
阿里云研发的AirCache技术被计算机视觉顶会ICCV2025收录,该技术通过激活跨模态关联、优化KV缓存压缩策略,显著提升视觉语言模型(VLMs)的推理效率与存储性能。实验表明,在保留仅10%视觉缓存的情况下,模型性能下降小于1%,解码延迟最高降低66%,吞吐量提升达192%。AirCache无需修改模型结构,兼容主流VLMs,已在教育、医疗、政务等多个行业落地应用,助力多模态大模型高效赋能产业智能化升级。
403 1
|
5月前
|
存储 人工智能 云计算
挑战杯专属支持资源|阿里云-AI大模型算力及实验资源丨云工开物
阿里云发起的“云工开物”高校支持计划,助力AI时代人才培养与科研创新。为“挑战杯”参赛选手提供专属算力资源、AI模型平台及学习训练资源,包括300元免费算力券、百炼大模型服务、PAI-ArtLab设计平台等,帮助学生快速掌握AI技能并构建优秀作品,推动产学研融合发展。访问链接领取资源:https://university.aliyun.com/action/tiaozhanbei。

推荐镜像

更多