【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


本文通过一个案例来学习下如何让 LangChain 写代码并自动执行输出结果。

本文案例来自:https://python.langchain.com/docs/expression_language/cookbook/code_writing

0. 完整代码

先来跑通demo代码

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import (
    ChatPromptTemplate,
)
from langchain_experimental.utilities import PythonREPL
from langchain_openai import ChatOpenAI
template = """Write some python code to solve the user's problem. 
Return only python code in Markdown format, e.g.:
```python
....
```"""
prompt = ChatPromptTemplate.from_messages([("system", template), ("human", "{input}")])
model = ChatOpenAI()
def _sanitize_output(text: str):
    _, after = text.split("```python")
    return after.split("```")[0]
chain = prompt | model | StrOutputParser() | _sanitize_output | PythonREPL().run
result = chain.invoke({"input": "whats 2 plus 2"})
print(result)

执行结果:

1. 代码学习

这段代码实现的功能:当接收到用户提问时,通过调用大模型来写Python代码,通过执行Python代码输出Python代码的运行结果。上面的demo中,用户提问2+2等于几,Python程序执行结果为4。

案例很简单,但也有值得学习的地方。

(1)首先是前面的传统chain部分,prompt | model | StrOutputParser 就是将用户提问和系统设定的Prompt给到大模型,然后大模型输出结果,通过StrOutputParser将结果转换成字符串格式。

StrOutputParser 的作用:将大模型的输出转换成字符串格式。如果是LLM的返回,保持原样(LLM的返回本来就是字符串),如果是ChatModel的返回,它会输出.content 中的信息作为结果字符串。

这里面可以重点关注下给系统设定的Prompt:限定了只输出Python代码,并且用Markdown的形式,并且还给了输出格式的例子。最大限度地保证大模型输出地Python代码是可以运行的。

template = """Write some python code to solve the user's problem. 
Return only python code in Markdown format, e.g.:
```python
....
```"""

(2)_sanitize_output 函数,将大模型输出的Markdown格式的Python代码提取出来,其实这里就是去掉前面的 “```python” 和后面的 “```”。所以,前面的Prompt就显得至关重要了,一定将输出格式限制死了,有一点不对就会提取Python代码出错。

(3)PythonREPL().run ,从代码中也能猜出它就是用来在内部运行 Python 程序的,它是LangChain封装的一个用来执行Python代码的类。

run 函数的几个注意点:

  • 参数为完整的要执行的Python代码
  • 其返回结果为 Python 代码中通过 print 函数打印的内容,如下示例代码,print(1+1),才能返回2。
from langchain_experimental.utilities import PythonREPL
python_repl = PythonREPL()
python_repl.run("print(1+1)") # 有返回值,2
python_repl.run("print(1+1)") # 无返回值,空的

本文中demo程序生成的Python代码,有使用 print

看下PythonREPL的源码,原理很简单,就是调用了一下 exec 函数执行代码,然后将标准输出中的内容放到队列中。执行完之后 return queue.get(),将标准输出内容作为结果返回。

所以从源码也可以知道,它不止会返回 print 打印出来的内容,任何输出到标准输出中的信息它都会返回,例如程序报错、警告等。

本文到这里就结束了。通过本文,我们主要是学习了如何让大模型写Python程序并自动执行。其实最大的收获就是知道了有 PythonREPL 这么个东西,更深一点知道了 PythonREPL 的运行原理,后面即使不用LangChain,也能自己写一段类似的功能。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
5天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
4天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
12 1
|
5天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
17 2
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
28 1
|
11天前
|
存储 XML 人工智能
深度解读AI在数字档案馆中的创新应用:高效识别与智能档案管理
基于OCR技术的纸质档案电子化方案,通过先进的AI能力平台,实现手写、打印、复古文档等多格式高效识别与智能归档。该方案大幅提升了档案管理效率,确保数据安全与隐私,为档案馆提供全面、智能化的电子化管理解决方案。
104 48
|
6天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
35 10
|
7天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。