【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述

简介: 【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述

本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。

本文为该课程的第二章(智能体综述及多智能体框架介绍)笔记)。

0. 温故而知新 - 再看 AI Agent 是什么

前面文章已经介绍过我理解的 AI Agent 的概念。

  • 智能体就是像人一样,能理解现实中的事务,有记忆,会思考,会总结,会学习,像人一样会规划,会决策,会使用各种工具来完成某项任务。
  • 多智能体,就像一个团队,大了说像我们现在生活的社会,每个智能体有自己的职能和领域,人与人之间通过协作,能完成更加复杂和庞大的目标。

再看这张经典的图:

现在看来,中间的Agent应该换为LLM更为合适,而整张图才能叫做Agent。也就是说:Agent是上图中所有能力的集合,以LLM为大脑,来决定完成任务所需的步骤,规划执行该使用哪些工具,该得到什么结果。再辅以记忆能力,让整个过程像人一样能够自主决策,自主行动以自主达到目的。

1. 一个AI Agent实例介绍 - BabyAGI

项目地址:https://github.com/yoheinakajima/babyagi/blob/main/README.md

其运行流程如下

(1)从任务列表中提取第一个任务

(2)将任务发送到执行代理(Execution Agent),该Agent使用LLM根据上下文完成任务。

(3)丰富结果并将其存储在向量数据库

(4)创建新任务,并根据上一任务的目标和结果重新确定任务列表的优先级。

(5)重复以上步骤

其中涉及四个Agent,其中前三个Agent都利用了大模型的能力来进行任务规划和总结

  • Execution Agent 接收目标和任务,调用大模型 LLM来生成任务结果。
  • Task Creation Agent 使用大模型LLM 根据目标和前一个任务的结果创建新任务。它的输入是:目标,前一个任务的结果,任务描述和当前任务列表。
  • Prioritization Agent 使用大模型LLM对任务列表进行重新排序。它接受一个参数:当前任务的 ID
  • Context Agent 使用向量存储和检索任务结果以获取上下文。

运行起来后的过程可以参考这篇文章:babyagi: 人工智能任务管理系统

2. 多智能体框架比较

对市面上多智能体框架了解的不多,目前为止,只用过 MetaGPT、AutoGPT,听过AutoGen。想了解更多的,可以参考这篇文章 基于大语言模型的AI Agents—Part 3,里面总结比较了常见的多智能体框架:

这里我只对MetaGPT和AutoGPT的使用感受做下比较和说明,自己的感受,个人观点,欢迎批评指正。

  • AutoGPT更多的是依赖大模型去进行规划和行动,个人感觉有点过于依赖大模型的能力了。而目前而言,大模型的能力还远没有达到能自主规划和决策行动的地步,这使得AutoGPT的执行结果非常地不可控,很难达到自己想要的效果。并且其是单智能体,能完成的工作相对比较简单。接口也不太好用。
  • MetaGPT更多的是依赖事先定义好的SOP(标准作业流程),这使得任务的执行过程变得相对可控,最大限度的保证任务的正确执行。并且可以是多智能体,能执行的任务相对复杂。接口封装也比较清晰。尤其是Team、Role和Action三个抽象,真的将Agent抽象为人。总结起来,MetaGPT的工作流程就像:SOP是制订了一条标准化的流水线,然后Role是分布在流水线各个位置的打工人,大家各司其职,合作共赢。

3. 警告?

Agent因为涉及到多个步骤,而且大模型的能力并没有我们想象地那么强,如果不加限制,很容易陷入死循环… 这将是你财富的直接损失… 所以一定要谨慎。正如 BabyAGI里的警告:

相关文章
|
11天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
5天前
|
人工智能 知识图谱
轻松搭建AI版“谁是卧底”游戏,muAgent框架让知识图谱秒变编排引擎,支持复杂推理+在线协同
蚂蚁集团推出muAgent,兼容现有市面各类Agent框架,同时可实现复杂推理、在线协同、人工交互、知识即用四大核心差异技术功能。
15 2
|
12天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
27 3
|
13天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
69 4
|
1月前
|
人工智能 安全 决策智能
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
|
25天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
186 6
|
1月前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
近期,阿里云重磅发布了首款面向 Java 开发者的开源 AI 应用开发框架:Spring AI Alibaba(项目 Github 仓库地址:alibaba/spring-ai-alibaba),Spring AI Alibaba 项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。本文将详细介绍 Spring AI Alibaba 的核心特性,并通过「智能机票助手」的示例直观的展示 Spring AI Alibaba 开发 AI 应用的便利性。示例源
|
1月前
|
人工智能 开发框架 Java
总计 30 万奖金,Spring AI Alibaba 应用框架挑战赛开赛
Spring AI Alibaba 应用框架挑战赛邀请广大开发者参与开源项目的共建,助力项目快速发展,掌握 AI 应用开发模式。大赛分为《支持 Spring AI Alibaba 应用可视化调试与追踪本地工具》和《基于 Flow 的 AI 编排机制设计与实现》两个赛道,总计 30 万奖金。
|
1月前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
阿里云开源 Spring AI Alibaba,旨在帮助 Java 开发者快速构建 AI 应用,共同构建物理新世界。
|
1月前
|
机器学习/深度学习 人工智能 算法
打造你的超级Agent智能体——在虚拟迷宫中智斗未知,解锁AI进化之谜的惊心动魄之旅!
【10月更文挑战第5天】本文介绍了一个基于强化学习的Agent智能体项目实战,通过控制Agent在迷宫环境中找到出口来完成特定任务。文章详细描述了环境定义、Agent行为及Q-learning算法的实现。使用Python和OpenAI Gym框架搭建迷宫环境,并通过训练得到的Q-table测试Agent表现。此项目展示了构建智能体的基本要素,适合初学者理解Agent概念及其实现方法。
89 9
下一篇
无影云桌面