【AI大模型应用开发】【AutoGPT系列】1. 快速上手 - 运行原生AutoGPT or 利用AutoGPT框架开发自己的Agent

简介: 【AI大模型应用开发】【AutoGPT系列】1. 快速上手 - 运行原生AutoGPT or 利用AutoGPT框架开发自己的Agent
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


上篇文章中,我们了解了AutoGPT的概念和原理。今天,我们来学习如何上手使用AutoGPT。

AutoGPT目前好像没有了利用 pip install 来安装python包的使用方式?

文章目录

0. 环境搭建

我是Windows系统,需要使用 wsl 进行安装,Linux或者Mac直接用命令行即可。

0.1 Windows系统安装方式

(1)将AutoGPT clone到电脑WSL系统内部某个文件夹内,而不是clone到Windows系统的某个文件夹内(这个容易失败,后面2.2为此种失败的尝试)。在某个路径文件夹下执行:

git clone https://github.com/Significant-Gravitas/AutoGPT.git

(2)进入你的本地目录

cd xxx/AutoGPT

(3)找到.env.template.文件,复制一份重命名为.env文件,将API Key和Base URL代理服务地址填上。

(4)按下面图片步骤生成GitHub的access token,并填到AutoGPT的配置文件中

  • 填表,生成token

  • 粘贴token到AutoGPT的.github_acess_token文件中

(5)配置github

git config --global user.name "Your Name"
git config --global user.email "you@example.com"

如果上面GitHub设置不成功,则会出现下面的错误:

(6)执行 ./run setup,安装成功显示如下:

0.2 失败的尝试 - 如果你失败了,可以看下是否是跟我一样的方式,帮你避坑

(1)将AutoGPT clone到电脑本地:在某个路径文件夹下执行:

git clone https://github.com/Significant-Gravitas/AutoGPT.git

(2)进入你的本地目录

cd /mnt/d/GitHub/AutoGPT_ZH

(3)找到.env.template.文件,复制一份重命名为.env文件,将API Key和Base URL代理服务地址填上。

(4)执行 ./run setup

(5)可能遇到如下错误:

解决此错误:

sudo apt update
sudo apt install dos2unix
dos2unix ./run

然后重新运行 ./run setup

(6)还有错误:

1. 运行AutoGPT

(1)在 AutoGPT/autogpts/autogpt 目录下运行AutoGPT命令:

python -m autogpt
• 1

运行成功如下:

注意运行命令的目录,如果不是在该目录下,可能会出现以下错误:

(2)运行成功输入你的需求或问题后,后面的过程需要人工干预(确认一些前置条件,如限制条件、最佳实践例子,数据来源等)

(3)确认好上面的信息后,AutoGPT才开始正式工作,思考、制定计划,根据限制条件等组织答案回复给用户。最后还需要用户干预,授权执行程序,然后才能得到最终结果。

从这个运行过程,可以看到AutoGPT是半自动化的,虽然它在ChatGPT的基础上增加了独立思考和计划行动的能力,但中间仍需要人工的干预。

并且这种方法使用的是开源AutoGPT中已有的能力。AutoGPT虽然提供了一个完整的框架和可用的全功能,但它不是一个已经把各种问题解决的很好、拿来就能用的具体工具。目前来看,它更适合用来当作一个架构,让大家在此基础上开发专门解决具体问题的Agent。下面我们来看下怎样在此架构的基础上开发属于我们自己的Agent。

2. 创建并运行你自己的Agent

(1)创建一个自己的AutoGPT

./run agent create YOUR_AUTOGPT_NAME

创建成功后,在代码目录下会出现你自定义的AutoGPT目录:

(2)运行自己的AutoGPT

./ru agent start YOUR_AUTOGPT_NAME

(3)可能遇到的报错:

  • 解决方案,命令行执行下命令:
export PATH="$HOME/.local/bin:{$PATH}"

(4)再运行,首次启动会安装一些依赖

(5)成功启动后的界面

(6)打开网址,登录GitHub授权

(7)最终界面

至此,你自己的AutoGPT环境就搭建成功了,可以在此基础上定义自己的AutoGPT逻辑了。注意,上面的仅是环境和代码框架搭建成功,虽然有界面,但是并不具备大模型应用的能力,需要自己填充逻辑。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
29天前
|
人工智能 JSON 自然语言处理
基于阿里云通义千问的AI模型应用开发指南
阿里云通义千问是阿里巴巴集团推出的多模态大语言模型平台,提供了丰富的API和接口,支持多种AI应用场景,如文本生成、图像生成和对话交互等。本文将详细介绍阿里云通义千问的产品功能,并展示如何使用其API来构建一个简单的AI应用,包括程序代码和具体操作流程,以帮助开发者快速上手。
448 3
|
1月前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
90 2
|
27天前
|
存储 人工智能 分布式计算
Parquet 文件格式详解与实战 | AI应用开发
Parquet 是一种列式存储文件格式,专为大规模数据处理设计,广泛应用于 Hadoop 生态系统及其他大数据平台。本文介绍 Parquet 的特点和作用,并演示如何在 Python 中使用 Pandas 库生成和读取 Parquet 文件,包括环境准备、生成和读取文件的具体步骤。【10月更文挑战第13天】
217 60
|
10天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
11天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
25 3
|
12天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
61 4
|
22天前
|
敏捷开发 机器学习/深度学习 数据采集
端到端优化所有能力,字节跳动提出强化学习LLM Agent框架AGILE
【10月更文挑战第23天】字节跳动研究团队提出AGILE框架,通过强化学习优化大型语言模型(LLM)在复杂对话任务中的表现。该框架将LLM作为核心决策模块,结合记忆、工具和专家咨询模块,实现智能体的自我进化。实验结果显示,AGILE智能体在ProductQA和MedMCQA数据集上优于GPT-4。
84 4
|
24天前
|
人工智能 运维 Serverless
【CAP评测有奖】邀您共探 AI 应用开发新趋势,赢取多重好礼!
云应用开发平台 CAP(Cloud Application Platform)是阿里云推出的一站式应用开发和生命周期管理平台。是专为现代开发者打造的一站式解决方案,旨在简化应用开发流程,加速创新步伐。它集成了丰富的 Serverless + AI 应用模板、开源工具链与企业级应用管理功能,让无论是个人还是企业开发者,都能轻松构建云上应用,并实现持续迭代升级。
|
24天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
171 6
|
24天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
41 4