【AI大模型应用开发】【LangChain系列】3. 一文了解LangChain的记忆模块(理论实战+细节)

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 本文介绍了LangChain库中用于处理对话会话记忆的组件。Memory功能用于存储和检索先前的交互信息,以便在对话中提供上下文。目前,LangChain的Memory大多处于测试阶段,其中较为成熟的是`ChatMessageHistory`。Memory类型包括:`ConversationBufferMemory`(保存对话历史数组)、`ConversationBufferWindowMemory`(限制为最近的K条对话)和`ConversationTokenBufferMemory`(根据Token数限制上下文长度)。

大家好,我是【同学小张】。持续学习,持续干货输出,关注我,跟我一起学AI大模型技能。

大多数LLM应用程序都有一个会话接口。会话的一个重要组成部分是能够参考会话早期的信息(上文信息)。这种存储过去互动信息的能力就称为“记忆(Memory)”。LangChain提供了许多用于向系统添加Memory的封装。

目前 LangChain 中大多数的Memory封装还都是测试版本。成熟的Memory主要是ChatMessageHistory

0. 认识Memory

Memory,通俗的讲,就是记录对话的上下文信息,在有需要的时候补充到用户的提问中去。看上图,简单说下Memory的使用流程:

  • 当用户输入一个问题,首先从Memory中读取相关的上文信息(历史对话信息),然后组装成一个Prompt,调用大模型,大模型的回复作为历史对话信息保存在Memory中,供之后的对话使用。

下面让我们来看一看LangChain的Memory到底长什么样。

0. 对话上下文ConversationBufferMemory

这是最简单的Memory形式,保存形式类似是chat message的数组。

使用方法如下:

  • save_context 可以保存信息到memory中
  • load_memory_variables 获取memory中的信息
  • chat_memory.add_user_messagechat_memory.add_ai_message 也可以用来保存信息到memory中
from langchain.memory import ConversationBufferMemory, ConversationBufferWindowMemory
history = ConversationBufferMemory()
history.save_context({"input": "你好啊"}, {"output": "你也好啊"})
print(history.load_memory_variables({}))
history.save_context({"input": "你再好啊"}, {"output": "你又好啊"})
print(history.load_memory_variables({}))
history.chat_memory.add_user_message("你在干嘛")
history.chat_memory.add_ai_message("我在学习")
print(history.load_memory_variables({}))
## 或者直接使用 ChatMessageHistory 添加memory,效果一样
# from langchain.memory import ChatMessageHistory
# chat_history = ChatMessageHistory()
# chat_history.add_user_message("你在干嘛")
# chat_history.add_ai_message("我在学习")
# print(history.load_memory_variables({}))

运行结果:

上面的结果,可以看到返回的信息永远都是以“history”开头的,怎么修改这个key呢?只需要修改下面一句,填入 memory_key 参数。

history = ConversationBufferMemory(memory_key="chat_history_with_同学小张")

运行结果:

返回的结果还有一点值得注意,那就是它目前返回的是一个json字符串,这是可以直接给LLMs对话输入的。但对于ChatModels对话,它接收的参数是Chat Messages数组。我们可以通过改变参数return_messages=True,让这个memory的返回变成Chat Messages数组。

history = ConversationBufferMemory(memory_key="chat_history_with_同学小张", return_messages=True)

返回结果:

1. 只保留k个窗口的上下文:ConversationBufferWindowMemory

ConversationBufferWindowMemory允许用户设置一个K参数,来限定每次从记忆中读取最近的K条记忆。

from langchain.memory import ConversationBufferWindowMemory
window = ConversationBufferWindowMemory(k=1)
window.save_context({"input": "第一轮问"}, {"output": "第一轮答"})
window.save_context({"input": "第二轮问"}, {"output": "第二轮答"})
window.save_context({"input": "第三轮问"}, {"output": "第三轮答"})
print(window.load_memory_variables({}))

运行结果:

2. 通过 Token 数控制上下文长度:ConversationTokenBufferMemory

ConversationTokenBufferMemory允许用户指定最大的token长度,使得从记忆中取上文时不会超过token限制。

from langchain.memory import ConversationTokenBufferMemory
memory = ConversationTokenBufferMemory(
    llm=llm,
    max_token_limit=45
)
memory.save_context(
    {"input": "你好啊"}, {"output": "你好,我是你的AI助手。"})
memory.save_context(
    {"input": "你会干什么"}, {"output": "我什么都会"})
print(memory.load_memory_variables({}))

3. 更多记忆类型

  • ConversationSummaryMemory: 对上下文做摘要
  • ConversationSummaryBufferMemory: 保存 Token 数限制内的上下文,对更早的做摘要
  • VectorStoreRetrieverMemory: 将 Memory 存储在向量数据库中,根据用户输入检索回最相关的部分
  • ConversationEntityMemory:保存一些实体信息,例如从输入中找出一个人名,保存这个人的信息。

4. 总计

本文我们学习了 LangChain 的 Memory 记忆模块,可以看到它里面封装了很多的记忆类型,在项目中可以按需选用。但是也应该认识到,目前LangChain的记忆模块还不成熟,是测试版本。LangChain的快速迭代,需要我们时刻关注它的变化。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
14天前
|
缓存 监控 安全
通义大模型与现有企业系统集成实战《CRM案例分析与安全最佳实践》
本文档详细介绍了基于通义大模型的CRM系统集成架构设计与优化实践。涵盖混合部署架构演进(新增向量缓存、双通道同步)、性能基准测试对比、客户意图分析模块、商机预测系统等核心功能实现。同时,深入探讨了安全防护体系、三级缓存架构、请求批处理优化及故障处理机制,并展示了实时客户画像生成和动态提示词工程。通过实施,显著提升客服响应速度(425%)、商机识别准确率(37%)及客户满意度(15%)。最后,规划了技术演进路线图,从单点集成迈向自主优化阶段,推动业务效率与价值持续增长。
|
15天前
|
自然语言处理 前端开发 Java
JBoltAI 框架完整实操案例 在 Java 生态中快速构建大模型应用全流程实战指南
本案例基于JBoltAI框架,展示如何快速构建Java生态中的大模型应用——智能客服系统。系统面向电商平台,具备自动回答常见问题、意图识别、多轮对话理解及复杂问题转接人工等功能。采用Spring Boot+JBoltAI架构,集成向量数据库与大模型(如文心一言或通义千问)。内容涵盖需求分析、环境搭建、代码实现(知识库管理、核心服务、REST API)、前端界面开发及部署测试全流程,助你高效掌握大模型应用开发。
102 5
|
14天前
|
缓存 自然语言处理 监控
基于通义大模型的智能客服系统构建实战:从模型微调到API部署
本文详细解析了基于通义大模型的智能客服系统构建全流程,涵盖数据准备、模型微调、性能优化及API部署等关键环节。通过实战案例与代码演示,展示了如何针对客服场景优化训练数据、高效微调大模型、解决部署中的延迟与并发问题,以及构建完整的API服务与监控体系。文章还探讨了性能优化进阶技术,如模型量化压缩和缓存策略,并提供了安全与合规实践建议。最终总结显示,微调后模型意图识别准确率提升14.3%,QPS从12.3提升至86.7,延迟降低74%。
155 13
|
13天前
|
数据采集 存储 人工智能
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
|
13天前
|
API 数据处理 异构计算
魔塔社区-微调Qwen3-1.7B大模型实战
这是一篇关于模型微调实战的教程,主要步骤如下:1. 使用魔塔社区提供的GPU环境;2. 处理 delicate_medical_r1_data 数据集生成训练和验证文件;3. 加载Modelscope上的Qwen3-1.7B模型;4. 注册并使用Swanlab工具配置API;5. 按顺序执行完整代码完成微调设置;6. 展示训练过程。完整代码与实验记录分别托管于魔塔社区和SwanLab平台,方便复现与学习。
|
14天前
|
人工智能 Java API
Java 生态大模型应用开发全流程实战案例与技术路径终极对决
在Java生态中开发大模型应用,Spring AI、LangChain4j和JBoltAI是三大主流框架。本文从架构设计、核心功能、开发体验、性能扩展性、生态社区等维度对比三者特点,并结合实例分析选型建议。Spring AI适合已有Spring技术栈团队,LangChain4j灵活性强适用于学术研究,JBoltAI提供开箱即用的企业级解决方案,助力传统系统快速AI化改造。开发者可根据业务场景和技术背景选择最适合的框架。
88 2
|
14天前
|
机器学习/深度学习 资源调度 算法
Kaggle金牌方案复现:CGO-Transformer-GRU多模态融合预测实战
本文详细介绍了在2023年Kaggle "Global Multimodal Demand Forecasting Challenge"中夺冠的**CGO-Transformer-GRU**方案。该方案通过融合协方差引导优化(CGO)、注意力机制和时序建模技术,解决了多模态数据预测中的核心挑战,包括异构数据对齐、模态动态变化及长短期依赖建模。方案创新性地提出了动态门控机制、混合架构和梯度平衡算法,并在公开数据集TMU-MDFD上取得了RMSE 7.83的优异成绩,领先亚军12.6%。
|
16天前
|
数据采集 人工智能 编解码
2025年颠覆闭源大模型?MonkeyOCR:这款开源AI文档解析模型,精度更高,速度更快!
还在依赖昂贵且慢的闭源OCR工具?华中科技大学开源的MonkeyOCR文档解析模型,以其超越GPT4o的精度和更快的推理速度,在单机单卡(3090)上即可部署,正颠覆业界认知。本文将深入解析其设计哲学、核心突破——大规模自建数据集,并分享实测体验与避坑指南。
270 0
|
机器学习/深度学习 人工智能 算法
如果能在1分钟内训练出个AI模型,你想要什么?
随着人工智能的技术不断成熟,AI逐渐在各行业内落地,比如:在常见的安防监控领域,我们可以通过人脸识别去抓捕逃犯;在教育领域,我们可以使用OCR识别做拍题识别;在新零售领域,我们通过物体识别判断货品位置和数量;甚至在养猪场,我们都能用AI技术检测养猪的位置及数量。
1893 0
如果能在1分钟内训练出个AI模型,你想要什么?
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
当无人机遇上Agentic AI:新的应用场景及挑战
本文简介了Agentic AI与AI Agents的不同、Agentic无人机的概念、应用场景、以及所面临的挑战
94 5
当无人机遇上Agentic AI:新的应用场景及挑战

热门文章

最新文章

AI助理
登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问

你好,我是AI助理

可以解答问题、推荐解决方案等