【AI大模型应用开发】【LangChain系列】1. 全面学习LangChain输入输出I/O模块:理论介绍+实战示例+细节注释

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 【AI大模型应用开发】【LangChain系列】1. 全面学习LangChain输入输出I/O模块:理论介绍+实战示例+细节注释

上文我们介绍过LangChain的基本框架和其中包含的主要模块。从今天开始,我们开始学习各个模块,深入了解,同时进行相应实战练习。

本文学习 LangChain 中的 模型 I/O 封装模块。

0. 模块介绍

任何AI大模型应用程序的核心元素都是大模型。LangChain提供了与各种大模型接口进行交互的封装。

这张图生动地展现了LangChain对于I/O(输入输出)的封装。

  • 首先是 Format 部分,这部分的作用是组装用户输入和Prompt模板,作为大模型的输入。
  • 然后是 Predict 部分,这部分就是调用大模型接口获得结果
  • 最后是 Parse 部分,这部分的作用是对大模型的结果进行解析,将大模型的输出转换到要求的格式(如json)上,或者对输出进行校验等等

1. Format部分:Prompt模板封装

1.1 PromptTemplate:创建一个字符串类型的Prompt

PromptTemplate 可以在模板中自定义变量

import os
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
from langchain_openai import ChatOpenAI
 
llm = ChatOpenAI() # 默认是gpt-3.5-turbo
prompt_template = """
我的名字叫【{name}】,我的个人介绍是【{description}】。
请根据我的名字和介绍,帮我想一段有吸引力的自我介绍的句子,以此来吸引读者关注和点赞我的账号。
"""
from langchain.prompts import PromptTemplate
template = PromptTemplate.from_template(prompt_template)
print(template.input_variables)
prompt = template.format(name='同学小张', description='热爱AI,持续学习,持续干货输出')
print(prompt)
response = llm.invoke(prompt)
print(response.content)

1.2 ChatPromptTemplate:创建一个Prompt的Message数组

...... 省略llm的引入代码,可参考前文 ......
from langchain.prompts import ChatPromptTemplate
from langchain.prompts.chat import SystemMessagePromptTemplate, HumanMessagePromptTemplate
template = ChatPromptTemplate.from_messages(
    [
        SystemMessagePromptTemplate.from_template("你是【{name}】的个人助手,你需要根据用户输入,来替用户生成一段有吸引力的自我介绍的句子,以此来吸引读者关注和点赞用户的账号。"),
        HumanMessagePromptTemplate.from_template("{description}"),
    ]
)
prompt = template.format(name="同学小张", description="热爱AI,持续学习,持续干货输出")
print(prompt)
response = llm.invoke(prompt)
print(response.content)

运行后输出结果如下,可以看到Prompt中带入了 System、Human这样的角色名,区分Prompt的来源。

1.3 FewShotPromptTemplate:给例子的Prompt模板

在之前文章Prompt优化中,我们提到Prompt中给几个例子可以让大模型更好地生成正确的结果。这个模板就是给例子的。

from langchain.prompts import PromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
#例子(few-shot)
examples = [
    {
        "input": "北京天气怎么样",
        "output" : "北京市"
    },
    {
        "input": "南京下雨吗",
        "output" : "南京市"
    },
    {
        "input": "江城热吗",
        "output" : "武汉市"
    }
]
#例子拼装的格式
example_prompt = PromptTemplate(input_variables=["input", "output"],  template="Input: {input}\nOutput: {output}") 
#Prompt模板
prompt = FewShotPromptTemplate(
    examples=examples, 
    example_prompt=example_prompt, 
    suffix="Input: {input}\nOutput:", 
    input_variables=["input"]
)
prompt = prompt.format(input="羊城多少度")
print("===Prompt===")
print(prompt)
response = llm.invoke(prompt)
print("===Response===")
print(response)

以上代码为FewShotPromptTemplate的使用示例,总结为以下关键点:

  • 例子(few-shot)用数组表示:examples
  • 用PromptTemplate表示examples中的格式:Input后跟着output,注意:input_variables中的变量与examples中每个元素的key保持一致。
  • 通过 FewShotPromptTemplate 将以上元素组合起来
  • 同时传入 suffix 参数,该参数是接收用户的输入,组装提问的prompt模板。
  • 然后input_variables表示用户输入的参数变量名

运行结果如下:红框内是通过FewShotPromptTemplate 将examples、example_prompt、suffix组合起来后最终的给大模型的Prompt。

1.4 从文件加载Prompt模板

我们还可以将Prompt模板单独存放在一个文件中,在程序运行时通过加载文件来导入Prompt模板。

这种方式很好地实现了 Prompt 和程序的分离,使得两者可以分别单独修改。甚至你可以将Prompt单独放在一个线上服务或数据库中,单独维护。

下面来看怎么实现。

1.4.1 Prompt模板文件格式

Prompt模板文件支持两种格式:yaml格式和json格式

  • yaml格式:
_type: prompt
input_variables:
    ["name", "description"]
template: 
    我的名字叫【{name}】,我的个人介绍是【{description}】。\n 请根据我的名字和介绍,帮我想一段有吸引力的自我介绍,以此来吸引读者关注和点赞我的账号。
  • json格式
{
    "_type": "prompt",
    "input_variables": ["name", "description"],
    "template": "我的名字叫【{name}】,我的个人介绍是【{description}】。\n 请根据我的名字和介绍,帮我想一段有吸引力的自我介绍,以此来吸引读者关注和点赞我的账号。"
}
1.4.2 加载文件

使用 LangChain的load_prompt进行加载。

from langchain.prompts import load_prompt
prompt = load_prompt("D:\GitHub\LEARN_LLM\langchain\langchain_prompt_file_test.json")
prompt_str = prompt.format(name="同学小张", description="热爱AI,持续学习,持续干货输出")
print(prompt_str)
response = llm.invoke(prompt_str)
print(f"\n{response}")

1.4.3 更进一步:文件套文件

LangChain也允许你在Prompt文件中再套Prompt文件:将文件中的template字段单独放一个txt文件使用。拆分后文件如下:

  • prompt_template_test.txt
我的名字叫【{name}】,我的个人介绍是【{description}】。\n 请根据我的名字和介绍,帮我想一段有吸引力的自我介绍,以此来吸引读者关注和点赞我的账号。
  • langchain_prompt_file_test.json
{
    "_type": "prompt",
    "input_variables": ["name", "description"],
    "template_path": "D:\\GitHub\\LEARN_LLM\\langchain\\prompt_template_test.txt"
}

注意:json里面的template字段换成了template_path字段

1.5 其它Prompt模板

还有一些其它的Prompt模板,就不详细介绍了,都差不多。

  • FewShotChatMessagePromptTemplate
  • ChatMessagePromptTemplate:可以自定义Prompt的角色名,如之前的“System”、“AI”、“Human”都是角色。

该部分参考:https://python.langchain.com/docs/modules/model_io/prompts/

总结:把Prompt模板看作带有参数的函数

2. Predict部分:大模型接口封装

这部分主要看下LangChain对大模型的两种封装:llm 和 chat_model。

from langchain_openai import ChatOpenAI
from langchain_openai import OpenAI
llm = OpenAI()
chat_model = ChatOpenAI()
from langchain.schema import HumanMessage
text = "What would be a good company name for a company that makes colorful socks?"
messages = [HumanMessage(content=text)]
llm.invoke(text)
# >> Feetful of Fun
chat_model.invoke(messages)
# >> AIMessage(content="Socks O'Color")

可以看到 llm 和 chat_model 的区别,一个输出字符串,一个输出message。

3. Parse部分:输出结果校验的封装

LangChain封装了一些对于大模型输出结果的约定和校验能力。下面以PydanticOutputParser为例演示一下Parse部分的使用方法和作用。

3.1 使用步骤

(1)首先定义一个你期望返回的数据结构

下面代码中,我们定义了一个Joke数据结构,它里面包含的信息有:

  • 两个变量名:setup 和 punchline,大模型的返回需要以这两个名称作为key来组织答案
  • 一个自定义的校验函数:question_ends_with_question_mark,校验信息是否符合你的要求,如果不符合,则报错。

@validator("setup") 表示校验结果中的setup字段。也就是说,首先大模型回复的答案中,首先必须是个json结构,才能解析出setup的内容。其次,json数据结构中必须有setup的字段。最后,setup的内容必须符合函数中定义的规则。这样才算通过,否则报错。

from langchain_core.pydantic_v1 import BaseModel, Field, validator
# 定义你期望的数据结构
class Joke(BaseModel):
    setup: str = Field(description="question to set up a joke")
    punchline: str = Field(description="answer to resolve the joke")
    # 使用Pydantic添加自定义的校验逻辑,如下为检测内容最后一个字符是否为问号,不为问号则提示错误.
    @validator("setup")
    def question_ends_with_question_mark(cls, field):
        if field[-1] != "?":
            raise ValueError("Badly formed question!")
        return field

(2)生成一个解析器的实例

parser = PydanticOutputParser(pydantic_object=Joke)

(3)生成 Prompt 模板

在这个Prompt模板中:

  • 通过template指定Prompt的框架
  • input_variables指定用户输入的信息放到这个变量名中
  • partial_variables是提前填充部分Prompt变量,这里通过parser.get_format_instructions()获取PydanticOutputParser中封住好的Prompt部分。
prompt = PromptTemplate(
    template="Answer the user query.\n{format_instructions}\n{query}\n",
    input_variables=["query"],
    partial_variables={"format_instructions": parser.get_format_instructions()},
)

看下parser.get_format_instructions()的内容:

The output should be formatted as a JSON instance that conforms to the JSON schema below.

As an example, for the schema {“properties”: {“foo”: {“title”: “Foo”,

“description”: “a list of strings”, “type”: “array”, “items”: {“type”:

“string”}}}, “required”: [“foo”]} the object {“foo”: [“bar”, “baz”]}

is a well-formatted instance of the schema. The object {“properties”:

{“foo”: [“bar”, “baz”]}} is not well-formatted.

Here is the output schema: ```{“properties”: {“setup”: {“title”:
“Setup”, “description”: “question to set up a joke”, “type”:
“string”}, “punchline”: {“title”: “Punchline”, “description”: “answer
to resolve the joke”, “type”: “string”}}, “required”: [“setup”,
“punchline”]} ```

可以看到,LangChain内部将咱们上面定义的Joke数据结构填到了里面,并要求大模型输出json结构。

(4)加上用户的提问,调用大模型获取回复

prompt_str = prompt.format(query="Tell me a joke.")
response = llm.invoke(prompt_str)

完整Prompt如下:

运行结果如下:

(5)校验输出结果是否符合要求

parser_result = parser.invoke(response) ## 调用parser的invoke,校验结果是否符合要求

上面的结果明显符合要求,最终输出如下:

#>> setup="Why don't scientists trust atoms?" punchline='Because they make up everything!'

3.2 不符合要求的情况

为了看一下不符合要求时会发生什么,我在大模型返回后手动改了下结果,让它不符合要求(要求是问句结尾必须是问号,下面我将问号删掉了)。

运行结果:报错了

如果大模型返回的结果不是json结构,也会报错:

3.3 不符合要求怎么办?Auto-Fixing Parser帮你自动修复错误

基本用法如下:

## 1. 引入OutputFixingParser
from langchain.output_parsers import OutputFixingParser
## 2. 使用之前的parser和llm,构建一个OutputFixingParser实例
new_parser = OutputFixingParser.from_llm(parser=parser, llm=llm)
## 3. 用OutputFixingParser自动修复并解析
parser_result = new_parser.parse(response.content)
print("===重新解析结果===")
print(parser_result)

为了展示它的效果,我还是手动将结果改错了。

输出结果如下:可以看到重新解析后结果正确了。

重新解析为什么就正确了?其实是OutputFixingParser内部又重新调用了一遍大模型

3.4 完整代码

import os
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
from langchain_openai import ChatOpenAI
 
llm = ChatOpenAI() # 默认是gpt-3.5-turbo
def output_parse_test():
    from langchain.output_parsers import PydanticOutputParser
    from langchain_core.pydantic_v1 import BaseModel, Field, validator
    from langchain.prompts import PromptTemplate
    
    # 定义你期望的数据结构
    class Joke(BaseModel):
        setup: str = Field(description="question to set up a joke")
        punchline: str = Field(description="answer to resolve the joke")
        # 使用Pydantic添加自定义的校验逻辑,如下为检测内容最后一个字符是否为问号,不为问号则提示错误.
        @validator("setup")
        def question_ends_with_question_mark(cls, field):
            if field[-1] != "?":
                raise ValueError("Badly formed question!")
            return field
        
    # 生成一个解析器的实例
    parser = PydanticOutputParser(pydantic_object=Joke)
    
    # 生成 Prompt 模板
    prompt = PromptTemplate(
        template="Answer the user query.\n{format_instructions}\n{query}\n",
        input_variables=["query"],
        partial_variables={"format_instructions": parser.get_format_instructions()},
    )
    print(f"\n{parser.get_format_instructions()}")
    prompt_str = prompt.format(query="Tell me a joke.")
    print(prompt_str)
    response = llm.invoke(prompt_str)
    print(f"\n{response.content}")
    # response.content = response.content.replace("?", "") ## 认为改错结果,测试后面的OutputFixingParser
    try:
        parser_result = parser.invoke(response)
        print(f"\n{parser_result}")
    except Exception as e:
        print("===出现异常===")
        print(e)
        ## 1. 引入OutputFixingParser
        from langchain.output_parsers import OutputFixingParser
        ## 2. 使用之前的parser和llm,构建一个OutputFixingParser实例
        new_parser = OutputFixingParser.from_llm(parser=parser, llm=llm)
        ## 3. 用OutputFixingParser自动修复并解析
        parser_result = new_parser.parse(response.content)
        print("===重新解析结果===")
        print(parser_result)
output_parse_test()

关于更多 OutputParser 的说明,可以看官方文档:https://python.langchain.com/docs/modules/model_io/output_parsers/

4. 总结

本文我们全面学习了LangChain的模型 I/O 封装模块。

  • LangChain 提供了各种 PromptTemplate 类,可以自定义带变量的模板
  • LangChain 统一封装了各种模型的调用接口,包括llm型和chat_model型两种,区别见上文。
  • LangChain 提供了一系列输出解析器,用于将大模型的输出解析成结构化对象;额外带有自动修复功能。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
24天前
|
人工智能 自然语言处理 API
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
200 0
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
|
9天前
|
人工智能 定位技术 图形学
【unity实战】制作敌人的AI,使用有限状态机、继承和抽象类多态 定义不同状态的敌人行为
【unity实战】制作敌人的AI,使用有限状态机、继承和抽象类多态 定义不同状态的敌人行为
51 1
|
18天前
|
机器学习/深度学习 人工智能 Java
【Sping Boot与机器学习融合:构建赋能AI的微服务应用实战】
【Sping Boot与机器学习融合:构建赋能AI的微服务应用实战】
22 1
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
好书推荐丨AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀
好书推荐丨AI时代Python量化交易实战:ChatGPT让量化交易插上翅膀
26 2
|
9天前
|
机器学习/深度学习 人工智能 文字识别
【AI落地应用实战】如何让扫描工具更会思考——智能高清滤镜2.0实战测评
扫描全能王的智能高清滤镜2.0利用深度学习技术解决文档图像处理难题,如透字、阴影、褶皱、手指遮挡等问题。它采用自适应感知技术,识别并处理不同元素,同时结合多尺度感知融合方法,提升图像清晰度。实测显示,滤镜在曲面书籍、摩尔纹屏幕、透字文档和光线不均的图画等场景下表现优秀,能智能地适应和优化复杂条件下的扫描效果,提高了文档扫描的效率和质量。
|
23天前
|
SQL 存储 关系型数据库
AI代码提示工具可用于教学功能示例——MySQL
AI代码提示工具可用于教学功能示例——MySQL
22 0
|
24天前
|
机器学习/深度学习 传感器 人工智能
敢不敢和AI比猜拳?能赢算我输----基于手势识别的AI猜拳游戏【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
敢不敢和AI比猜拳?能赢算我输----基于手势识别的AI猜拳游戏【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
影中的ai技术
【6月更文挑战第27天】电影中的ai技术
221 65
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术对法律行业有何影响?
【6月更文挑战第27天】AI技术对法律行业有何影响?
78 3
|
3天前
|
数据采集 人工智能 边缘计算
AI技术实时数据处理
7月更文挑战第4天
14 2