【AI大模型应用开发】【LangChain系列】0. LangChain框架介绍,实现LangChain的Hello World

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】【LangChain系列】0. LangChain框架介绍,实现LangChain的Hello World

AI时代,相信大家或多或少都听过 LangChain 的大名。通俗的说,LangChain是一个面向大模型的开发框架(SDK)。

目前 LangChain 仍在快速迭代中,所以在使用中要时刻关注你所使用的版本和接口变更。

0. 认识LangChain框架

从上图可以看到,LangChain 目前有四层框架:

  • 最下层深色部分:LangChain的Python和JavaScript库。包含无数组件的接口和集成,以及将这些组件组合到一起的链(chain)和代理(agent)封装,还有链和代理的具体实现。
  • Templates:一组易于部署的参考体系结构,用于各种各样的任务。
  • LangServe:用于将LangChain链部署为REST API的库。
  • LangSmith:一个开发人员平台,允许您调试、测试、评估和监控基于任何LLM框架构建的链,并与LangChain无缝集成。

在最下层深色部分- LangChain的Python和JavaScript库中,可以看到它封装了一系列模块。

  • 模型 I/O 封装,包括:
  • LLMs:大语言模型
  • ChatModels:一般基于 LLMs,但按对话结构重新封装
  • Prompt:提示词模板
  • OutputParser:解析输出
  • Retrieval 数据连接与向量检索封装,包括:
  • Retriever: 向量的检索
  • Document Loader:各种格式文件的加载器
  • Embedding Model:文本向量化表示,用于检索等操作
  • Verctor Store: 向量的存储
  • Text Splitting:对文档的常用操作
  • Agents 根据用户输入,自动规划执行步骤,自动选择每步需要的工具,最终完成用户指定的功能,包括:
  • Tools:调用外部功能的函数,例如:调 google 搜索、文件 I/O、Linux Shell 等等
  • Toolkits:操作某软件的一组工具集,例如:操作 DB、操作 Gmail 等等
  • Chain 实现一个功能或者一系列顺序功能组合
  • Memory 记忆封装,也就是上下文的管理能力封装
  • Callbacks 一些过程回调函数

1. 动手实现你的第一个LangChain程序

1.1 LangChain 环境

(1)安装 LangChain

  • pip 安装
pip install langchain
  • conda 安装
conda install langchain -c conda-forge

(2)安装 LangChain X OpenAI

LangChain封装了对于大模型的调用接口,也就是说,我们可以选择使用的模型,无论是在线模型还是本地部署的模型。本文我们还是使用OpenAI的API来调用大模型。

pip install -U langchain-openai

1.2 通过LangChain的接口来调用OpenAI对话

import os
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
from langchain_openai import ChatOpenAI ## langchain封装的openai对话接口
 
llm = ChatOpenAI() # 默认是gpt-3.5-turbo
response = llm.invoke("你是谁") ## 通过 invoke 传入对话
print(response.content)
## 运行结果输出:我是一个AI助手,没有具体的身份。我是由OpenAI开发的,可以帮助回答问题和提供信息。

1.3 多轮对话的封装

import os
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
from langchain_openai import ChatOpenAI
 
llm = ChatOpenAI() # 默认是gpt-3.5-turbo
from langchain.schema import (
    AIMessage, #等价于OpenAI接口中的assistant role
    HumanMessage, #等价于OpenAI接口中的user role
    SystemMessage #等价于OpenAI接口中的system role
)
messages = [
    SystemMessage(content="你是[同学小张]的个人助理。你叫[小明]"), 
    HumanMessage(content="我叫[同学小张]"), 
    AIMessage(content="好的老板,你有什么吩咐?"),
    HumanMessage(content="我是谁") 
]
response = llm.invoke(messages)
print(response.content)
## 运行输出:您是同学小张。

通过以上代码可以看到:

  • LangChain内封装了AIMessage、HumanMessage、SystemMessage等消息类型,区分消息来源。
  • invoke对话接口接收一系列消息,可以实现多轮对话(上述代码中的多轮对话在哪:第一轮是“我叫[同学小张]”,第二轮我问它"我是谁"时,第一轮我的名字的信息带进去了,所以它才能回复:“您是同学小张”)。

这样模型封装的意义在哪?

  • 可以实现不同模型间的无缝切换,llm = ChatOpenAI()是GPT模型,它可以换成 llm = ErnieBotChat(),其它代码都不用改,就可以切换到文心大模型。

好了,本文先写到这,算是对 LangChain 系列开了个头。后面咱们深入各个模块去学习和实战。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
1月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
351 109
|
9天前
|
人工智能 缓存 监控
使用LangChain4j构建Java AI智能体:让大模型学会使用工具
AI智能体是大模型技术的重要演进方向,它使模型能够主动使用工具、与环境交互,以完成复杂任务。本文详细介绍如何在Java应用中,借助LangChain4j框架构建一个具备工具使用能力的AI智能体。我们将创建一个能够进行数学计算和实时信息查询的智能体,涵盖工具定义、智能体组装、记忆管理以及Spring Boot集成等关键步骤,并展示如何通过简单的对话界面与智能体交互。
193 1
|
9天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
376 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
21天前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
74 1
|
2月前
|
人工智能 自然语言处理 搜索推荐
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
|
2月前
|
机器学习/深度学习 人工智能 监控
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
大型动作模型(LAMs)作为人工智能新架构,融合神经网络与符号逻辑,实现企业重复任务的自动化处理。通过神经符号集成、动作执行管道、模式学习、任务分解等核心技术,系统可高效解析用户意图并执行复杂操作,显著提升企业运营效率并降低人工成本。其自适应学习能力与上下文感知机制,使自动化流程更智能、灵活,为企业数字化转型提供坚实支撑。
177 0
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
|
2月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
202 6
|
2月前
|
存储 人工智能 算法
AI测试平台实战:深入解析自动化评分和多模型对比评测
在AI技术迅猛发展的今天,测试工程师面临着如何高效评估大模型性能的全新挑战。本文将深入探讨AI测试平台中自动化评分与多模型对比评测的关键技术与实践方法,为测试工程师提供可落地的解决方案。
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型
139 13
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-LiveTranslate-全模态同传大模型

热门文章

最新文章