【AI大模型应用开发】【补充知识】文本向量化与向量相似度(含Python代码)

简介: 【AI大模型应用开发】【补充知识】文本向量化与向量相似度(含Python代码)

在上篇文章【AI大模型应用开发】3. RAG初探 - 动手实现一个最简单的RAG应用 中,我们动手实现了一个RAG基本流程。里面涉及到向量数据库和向量检索。对于没接触过的人可能比较懵。本文介绍下文本向量化的概念,以及向量检索的原理,只是简单介绍,不会深入,所以不用担心看不懂,想要详细研究的,可以去搜相关论文,涉及到机器学习和模型训练等。

0. 文本向量

0.1 什么是文本向量

文本向量(Text Vector)是一种将文本数据转换为数值向量的技术,以便于机器学习和数据分析。通过将文本数据转换为数值向量,我们可以使用机器学习算法对文本数据进行处理和分析。

0.2 文本向量是怎么得到的

(1)构建相关(正立)与不相关(负例)的句子对儿样本

(2)训练双塔式模型,让正例间的距离小,负例间的距离大

参考:https://arxiv.org/pdf/1908.10084.pdf

1. 获取文本向量

前面已经说了文本向量是怎么得到的,其实也是训练了一个模型。使用这个训练的模型,给一个输入,就可以得到该输入的向量。

这里我们可以使用OpenAI开放的文本向量化接口embeddings.create来获取某个文本的向量值。

from openai import OpenAI
import os
# 加载环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())  # 读取本地 .env 文件,里面定义了 OPENAI_API_KEY
client = OpenAI()
def get_embeddings(texts, model="text-embedding-3-small"):
    '''封装 OpenAI 的 Embedding 模型接口'''
    data = client.embeddings.create(input=texts, model=model).data
    return [x.embedding for x in data]

可以测试一下这个接口,看下这个接口输出的向量长什么样:

test_query = ["测试文本"]
vec = get_embeddings(test_query)[0]
print(vec[:10])
print(len(vec))

输出结果如下:

可以看到 “测试文本” 这四个字对应的输出是一个 1536 维的向量,这就是 “测试文本” 的向量表示。

注意相同的文本 使用 不同的向量化模型 获取的向量化结果是不同的,所以请保证你的RAG应用中使用的是同样的向量化模型和方式。

2. 向量间相似度计算

通过上面文本向量化,我们可以将一段文本转换成一串多维的数字,也就是数学上的向量。

2.1 向量间的距离

对于向量,相似度计算很简单,就是计算两个向量之间的距离。

距离的计算有多种,具体可看这篇文章: 向量距离计算的几种方式,这里面最常用的还是余弦距离和欧式距离。(下图来源网络,表示了欧式距离和余弦距离的样子。)

2.2 向量距离计算 Python代码

import numpy as np
from numpy import dot
from numpy.linalg import norm
def cos_sim(a, b):
    '''余弦距离 -- 越大越相似'''
    return dot(a, b)/(norm(a)*norm(b))
def l2(a, b):
    '''欧式距离 -- 越小越相似'''
    x = np.asarray(a)-np.asarray(b)
    return norm(x)

3. 向量相似度示例代码

# 能支持跨语言
query = "global conflicts"
documents = [
    "联合国就苏丹达尔富尔地区大规模暴力事件发出警告",
    "土耳其、芬兰、瑞典与北约代表将继续就瑞典“入约”问题进行谈判",
    "日本岐阜市陆上自卫队射击场内发生枪击事件 3人受伤",
    "国家游泳中心(水立方):恢复游泳、嬉水乐园等水上项目运营",
    "我国首次在空间站开展舱外辐射生物学暴露实验",
]
query_vec = get_embeddings([query])[0] # 计算自身的向量
doc_vecs = get_embeddings(documents) # 计算示例句子的向量
print("Cosine distance:")
print(cos_sim(query_vec, query_vec)) # 首先打印自身与自身的余弦距离
for vec in doc_vecs:
    print(cos_sim(query_vec, vec)) # 打印自身与示例句子的余弦距离
print("\nEuclidean distance:")
print(l2(query_vec, query_vec))  # 首先打印自身与自身的欧式距离
for vec in doc_vecs:
    print(l2(query_vec, vec)) # 打印自身与示例句子的欧式距离

运行结果如下:

可以看出,余弦距离越大表示相似度越高。欧式距离约小,表示相似度越高。

向量检索,就是将相似度最高的k个检索结果召回

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

相关文章
|
22天前
|
人工智能 并行计算 安全
从零到一,打造专属AI王国!大模型私有化部署全攻略,手把手教你搭建、优化与安全设置
【10月更文挑战第24天】本文详细介绍从零开始的大模型私有化部署流程,涵盖需求分析、环境搭建、模型准备、模型部署、性能优化和安全设置六个关键步骤,并提供相应的示例代码,确保企业能够高效、安全地将大型AI模型部署在本地或私有云上。
193 7
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
9天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
43 3
|
18天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
79 2
|
11天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
42 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
22天前
|
存储 人工智能 数据可视化
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
在数字化时代,企业面临海量客户对话数据处理的挑战。阿里云推出的“AI大模型助力客户对话分析”解决方案,通过先进的AI技术和智能化分析,帮助企业精准识别客户意图、发现服务质量问题,并生成详尽的分析报告和可视化数据。该方案采用按需付费模式,有效降低企业运营成本,提升客服质量和销售转化率。
高效率,低成本!且看阿里云AI大模型如何帮助企业提升客服质量和销售转化率
|
8天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
15天前
|
人工智能 JSON 自然语言处理
基于文档智能&RAG搭建更懂业务的AI大模型
本文介绍了一种结合文档智能和检索增强生成(RAG)技术,构建强大LLM知识库的方法。通过清洗文档内容、向量化处理和特定Prompt,提供足够的上下文信息,实现对企业级文档的智能问答。文档智能(Document Mind)能够高效解析多种文档格式,确保语义的连贯性和准确性。整个部署过程简单快捷,适合处理复杂的企业文档,提升信息提取和利用效率。
|
12天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
61 4