【AI大模型应用开发】3. RAG初探 - 动手实现一个最简单的RAG应用

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【AI大模型应用开发】3. RAG初探 - 动手实现一个最简单的RAG应用

0. 什么是RAG

大模型也不是万能的,也有局限性。

  • LLM 的知识不是实时的
  • LLM 可能不知道你私有的领域/业务知识

RAG(Retrieval Augmented Generation)顾名思义:通过检索的方法来增强生成模型的能力。你可以把这个过程想象成开卷考试。让 LLM 先翻书,再回答问题。

1. RAG基本流程

看图就很容易理解RAG的流程了:

(1)私有知识通过切分、向量化保存到向量数据库中,供后续使用

(2)用户提问时,将用户提问用同样的方式向量化,然后去向量数据库中检索

(3)检索出相似度最高的k个切分段落

(4)将检索结果和用户的提问放到Prompt模板中,组装成一个完整的Prompt

(5)组装好的Prompt给大模型,让大模型生成回答

理想状态下,大模型是完全依赖检索出的文档片段进行组织答案的

简化一下,可以看出RAG有两大过程:

  1. 加载文档,生成向量数据库
  2. 查询向量数据库,询问大模型得到答案

下面我们一步步拆解,深入了解下RAG的流程和实现RAG所需的基本模块。

2. 向量数据库的生成

2.1 文档加载与分块

首先加载我们私有的知识库。这里以加载PDF文件为例。Python提供了加载PDF的一些库,这里用 pdfminer。

  • 安装 pdfminer:
pip install pdfminer.six
  • 先看代码:
from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer
class PDFFileLoader():
    def __init__(self, file) -> None:
        self.paragraphs = self.extract_text_from_pdf(file, page_numbers=[0,3])
        i = 1
        for para in self.paragraphs[:3]:
            print(f"========= 第{i}段 ==========")
            print(para+"\n")
            i += 1
    
    def getParagraphs(self):
        return self.paragraphs
    ################################# 文档的加载与切割 ############################
    def extract_text_from_pdf(self, filename, page_numbers=None):
        '''从 PDF 文件中(按指定页码)提取文字'''
        paragraphs = []
        buffer = ''
        full_text = ''
        # 提取全部文本
        for i, page_layout in enumerate(extract_pages(filename)):
            # 如果指定了页码范围,跳过范围外的页
            if page_numbers is not None and i not in page_numbers:
                continue
            for element in page_layout:
                if isinstance(element, LTTextContainer):
                    full_text += element.get_text() + '\n'
        
        # 段落分割
        lines = full_text.split('。\n')
        for text in lines:
            buffer = text.replace('\n', ' ')
            
            if buffer:
                paragraphs.append(buffer)
                buffer = ''
                row_count = 0
                
        if buffer:
            paragraphs.append(buffer)
        return paragraphs
PDFFileLoader("D:\GitHub\LEARN_LLM\RAG\如何向 ChatGPT 提问以获得高质量答案:提示技巧工程完全指南.pdf")
  • 代码解释

(1)我们首先定义了一个 PDFFileLoader 的类,接收一个PDF文件路径。然后类内部调用extract_text_from_pdf去解析PDF文件并分段。

(2)extract_text_from_pdf中前半部分代码是利用 extract_pages 按页提取出PDF文件中的文字,然后组装成 full_text

(3)extract_text_from_pdf中后半部分代码是将 full_text 进行段落划分。

说明:因为每个PDF提取出来的文字格式可能不同,有的每一行后面都带有"\n\n",有的不带有"\n\n",有的每一行中的单词都粘在一起…,各种各样,所以PDF文字划分和段落分割的算法都无法做到完美适应所有PDF。本文重点不再这,所以粗暴地根据"。\n"划分了段落。实际应用中这里你应该按照你的PDF文件去进行调试和分割,段落划分这几行代码不能直接用。

可以简单看下我为什么能如此粗暴的划分段落:通过extract_pages提取出来的文本如下:

'如何向 ChatGPT 提问以获得高质量答案:提示\n技巧工程完全指南\n\n介绍\n\n我很高兴欢迎您阅读我的最新书籍《The Art

of Asking ChatGPT for High-Quality Answers: A complete \n\nGuide to

Prompt Engineering

Techniques》。本书是一本全面指南,介绍了各种提示技术,用于从\n\nChatGPT中生成高质量的答案 。\n\n我们将探讨如何使用不同的提示工程技术来实现不同的目标。ChatGPT是一款最先进的语言模型,能够生成\n\n类似人类的文本。然而,理解如何正确地向ChatGPT提问以获得我们所需的高质量输出非常重要。而这正是\n本书的目的 。\n\n无论您是普通人、研究人员、开发人员,还是只是想在自己的领域中将ChatGPT作为个人助手的人,本书都\n是为您编写的。我使用简单易懂的语言,提供实用的解释,并在每个提示技术中提供了示例和提示公式。通\n\n过本书,您将学习如何使用提示工程技术来控制ChatGPT的输出,并生成符合您特定需求的文本 。\n\n在整本书中,我们还提供了如何结合不同的提示技术以实现更具体结果的示例。我希望您能像我写作时一\n\n样,享受阅读本书并从中获得知识 。\n\n

\n\n

与原文对比,大体上按"。\n"来分割能与实际段落比较接近,所以本例我就先这样干了。这实际是不能用于实际项目的:

  • 分割结果(打印前三段):

2.2 创建向量数据库

本文以 chromadb 向量数据库为例进行实操。

  • 安装向量数据库chromadb
pip install chromadb
2.2.1 创建过程

(1)创建一个向量数据库类。该类add_documents函数用来添加数据,它需要三个参数:

  • 文档的向量
  • 文档的原文
  • 文档的id
import chromadb
from chromadb.config import Settings
class MyVectorDBConnector:
    def __init__(self, collection_name, embedding_fn):
        chroma_client = chromadb.Client(Settings(allow_reset=True))
        # 为了演示,实际不需要每次 reset()
        chroma_client.reset()
        # 创建一个 collection
        self.collection = chroma_client.get_or_create_collection(name=collection_name)
        self.embedding_fn = embedding_fn
    def add_documents(self, documents):
        '''向 collection 中添加文档与向量'''
        self.collection.add(
            embeddings=self.embedding_fn(documents),  # 每个文档的向量
            documents=documents,  # 文档的原文
            ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
        )
    def search(self, query, top_n):
        '''检索向量数据库'''
        results = self.collection.query(
            query_embeddings=self.embedding_fn([query]),
            n_results=top_n
        )
        return results

(2)文档的向量怎么来?可以通过OpenAI的embeddings接口计算得到:

from openai import OpenAI
import os
# 加载环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())  # 读取本地 .env 文件,里面定义了 OPENAI_API_KEY
client = OpenAI()
def get_embeddings(texts, model="text-embedding-3-small"):
    '''封装 OpenAI 的 Embedding 模型接口'''
    print(texts)
    print(model)
    data = client.embeddings.create(input=texts, model=model).data
    print(data)
    return [x.embedding for x in data]

(3)调用接口,创建向量数据库

# 创建一个向量数据库对象
vector_db = MyVectorDBConnector("demo", get_embeddings)
# 向向量数据库中添加文档
vector_db.add_documents(pdf_loader.getParagraphs())

(4)测试查询

user_query = "什么是角色提示?"
results = vector_db.search(user_query, 3) # 3是指查询出最相近的3块文本
for para in results['documents'][0]:
    print(para+"\n\n")
2.2.2 运行结果

(1)通过OpenAI的embeddings接口计算得到的文本向量

(2)查询结果,查找出最相近的3块文本

2.2.3 踩坑
2.2.3.1 坑一:NoneType object is not iterable

  • 原因:传入的分块有空字符的情况。

不知道这种情况为什么会导致NoneType的错误,可能是OpenAI向量化时对特殊字符进行了去除?

  • 解决方法:保证分块中没有全是特殊字符的分块即可。
2.2.3.2 坑二:Number of embeddings 9 must match number of ids 10

  • 原因:可以看下下面的代码,上面的错误指的是embeddings是9个值,而ids有10个值。这是因为在解决坑一时,将里面最后那个空的文档分块去掉了,没去生成embeddings。
self.collection.add(
    embeddings=self.embedding_fn(documents),  # 每个文档的向量
    documents=documents,  # 文档的原文
    ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
)
  • 解决方法:保证documents和embeddings的数组大小长度一致。

以上两个坑总体的解决方案代码,看下里面修改的部分(注释部分),在段落分割部分就把异常的分块去掉,从源头上保证documents的正常以及后面documents和embeddings数组大小一致:

# 段落分割
lines = full_text.split('。\n')
for text in lines:
    buffer = text.strip(' ').replace('\n', ' ').replace('[', '').replace(']', '') ## 1. 去掉特殊字符
    if len(buffer) < 10: ## 2. 过滤掉长度小于 10 的段落,这可能会导致一些信息丢失,慎重使用,实际生产中不能用
        continue
    if buffer:
        paragraphs.append(buffer)
        buffer = ''
        row_count = 0
        
if buffer and len(buffer) > 10: ## 3. 过滤掉长度小于 10 的段落,这可能会导致一些信息丢失,慎重使用,实际生产中不能用
    paragraphs.append(buffer)
return paragraphs

注意:文档分块不一定是按段落分。

3. Prompt模板

上面我们已经拿到了检索回来的相关文档。下面我们写一个Prompt模板用来组装这些文档以及用户的提问。

def build_prompt(prompt_template, **kwargs):
    '''将 Prompt 模板赋值'''
    prompt = prompt_template
    for k, v in kwargs.items(): 
        if isinstance(v,str):
            val = v
        elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):
            val = '\n'.join(v)
        else:
            val = str(v)
        prompt = prompt.replace(f"__{k.upper()}__",val)
    return prompt
prompt_template = """
你是一个问答机器人。
你的任务是根据下述给定的已知信息回答用户问题。
确保你的回复完全依据下述已知信息。不要编造答案。
如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。
已知信息:
__INFO__
用户问:
__QUERY__
请用中文回答用户问题。
"""

注意以上最重要的提示词,要求大模型完全按照给定的文本回答问题:

你的任务是根据下述给定的已知信息回答用户问题。

确保你的回复完全依据下述已知信息。不要编造答案。

如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。

4. 使用大模型得到答案

4.1 封装OpenAI接口

def get_completion(prompt, model="gpt-3.5-turbo-1106"):
    '''封装 openai 接口'''
    messages = [{"role": "user", "content": prompt}]
    response = client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=0,  # 模型输出的随机性,0 表示随机性最小
    )
    return response.choices[0].message.content

4.2 组装Prompt

prompt = build_prompt(prompt_template, info=results['documents'][0], query=user_query)
print(prompt)
  • 运行结果

4.3 使用大模型得到答案

response = get_completion(prompt)
print(response)
  • 运行结果

5. 总结

至此,我们已经实现了RAG的基本流程。总结下流程:

  • 离线部分,可提前生成好
    (1)文档加载与分块
    (2)分块数据灌入向量数据库
  • 在线部分
    (3)解析用户提问,用户提问向量化
    (4)查询向量数据库,得到最相似的k个文本块
    (5)使用得到的k个文本块和用户提问组装Prompt模板
    (6)询问大模型得到最终答案

5.1 封装RAG

我们将RAG流程封装一下,createVectorDB完成离线部分,创建出向量数据库和灌入数据。chat完成在线部分。

class RAG_Bot:
    def __init__(self, n_results=2):
        self.llm_api = get_completion
        self.n_results = n_results
    def createVectorDB(self, file):
        print(file)
        pdf_loader = PDFFileLoader(file)
        # 创建一个向量数据库对象
        self.vector_db = MyVectorDBConnector("demo", get_embeddings)
        # 向向量数据库中添加文档,灌入数据
        self.vector_db.add_documents(pdf_loader.getParagraphs())
    def chat(self, user_query):
        # 1. 检索
        search_results = self.vector_db.search(user_query,self.n_results)
        
        # 2. 构建 Prompt
        prompt = build_prompt(prompt_template, info=search_results['documents'][0], query=user_query)
        
        # 3. 调用 LLM
        response = self.llm_api(prompt)
        return response
  • 使用
rag_bot = RAG_Bot()
rag_bot.createVectorDB("D:\GitHub\LEARN_LLM\RAG\如何向 ChatGPT 提问以获得高质量答案:提示技巧工程完全指南.pdf")
response = rag_bot.chat("什么是角色提示?")
print("response=====================>")
print(response)

5.2 完整代码

from pdfminer.high_level import extract_pages
from pdfminer.layout import LTTextContainer
class PDFFileLoader():
    def __init__(self, file) -> None:
        self.paragraphs = self.extract_text_from_pdf(file, page_numbers=[0,3])
        i = 1
        for para in self.paragraphs:
            print(f"========= 第{i}段 ==========")
            print(para+"\n")
            i += 1
    
    def getParagraphs(self):
        return self.paragraphs
    ################################# 文档的加载与切割 ############################
    def extract_text_from_pdf(self, filename, page_numbers=None):
        '''从 PDF 文件中(按指定页码)提取文字'''
        paragraphs = []
        buffer = ''
        full_text = ''
        # 提取全部文本
        for i, page_layout in enumerate(extract_pages(filename)):
            # 如果指定了页码范围,跳过范围外的页
            if page_numbers is not None and i not in page_numbers:
                continue
            for element in page_layout:
                if isinstance(element, LTTextContainer):
                    full_text += element.get_text() + '\n'
        
        # 段落分割
        lines = full_text.split('。\n')
        for text in lines:
            buffer = text.strip(' ').replace('\n', ' ').replace('[', '').replace(']', '') ## 1. 去掉特殊字符
            if len(buffer) < 10: ## 2. 过滤掉长度小于 10 的段落,这可能会导致一些信息丢失,慎重使用,实际生产中不能用
                continue
            if buffer:
                paragraphs.append(buffer)
                buffer = ''
                row_count = 0
                
        if buffer and len(buffer) > 10: ## 3. 过滤掉长度小于 10 的段落,这可能会导致一些信息丢失,慎重使用,实际生产中不能用
            paragraphs.append(buffer)
        return paragraphs
# pdf_loader = PDFFileLoader("D:\GitHub\LEARN_LLM\RAG\如何向 ChatGPT 提问以获得高质量答案:提示技巧工程完全指南.pdf")
from openai import OpenAI
import os
# 加载环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())  # 读取本地 .env 文件,里面定义了 OPENAI_API_KEY
client = OpenAI()
def get_embeddings(texts, model="text-embedding-3-small"):
    '''封装 OpenAI 的 Embedding 模型接口'''
    data = client.embeddings.create(input=texts, model=model).data
    return [x.embedding for x in data]
import chromadb
from chromadb.config import Settings
class MyVectorDBConnector:
    def __init__(self, collection_name, embedding_fn):
        chroma_client = chromadb.Client(Settings(allow_reset=True))
        # 为了演示,实际不需要每次 reset()
        chroma_client.reset()
        # 创建一个 collection
        self.collection = chroma_client.get_or_create_collection(name=collection_name)
        self.embedding_fn = embedding_fn
    def add_documents(self, documents):
        '''向 collection 中添加文档与向量'''
        self.collection.add(
            embeddings=self.embedding_fn(documents),  # 每个文档的向量
            documents=documents,  # 文档的原文
            ids=[f"id{i}" for i in range(len(documents))]  # 每个文档的 id
        )
    def search(self, query, top_n):
        '''检索向量数据库'''
        results = self.collection.query(
            query_embeddings=self.embedding_fn([query]),
            n_results=top_n
        )
        return results
# # 创建一个向量数据库对象
# vector_db = MyVectorDBConnector("demo", get_embeddings)
# # 向向量数据库中添加文档
# vector_db.add_documents(pdf_loader.getParagraphs())
# user_query = "什么是角色提示?"
# results = vector_db.search(user_query, 3)
# for para in results['documents'][0]:
#     print(para+"\n\n")
def build_prompt(prompt_template, **kwargs):
    '''将 Prompt 模板赋值'''
    prompt = prompt_template
    for k, v in kwargs.items(): 
        if isinstance(v,str):
            val = v
        elif isinstance(v, list) and all(isinstance(elem, str) for elem in v):
            val = '\n'.join(v)
        else:
            val = str(v)
        prompt = prompt.replace(f"__{k.upper()}__",val)
    return prompt
prompt_template = """
你是一个问答机器人。
你的任务是根据下述给定的已知信息回答用户问题。
确保你的回复完全依据下述已知信息。不要编造答案。
如果下述已知信息不足以回答用户的问题,请直接回复"我无法回答您的问题"。
已知信息:
__INFO__
用户问:
__QUERY__
请用中文回答用户问题。
"""
########################### 大模型接口封装 #############################
def get_completion(prompt, model="gpt-3.5-turbo-1106"):
    '''封装 openai 接口'''
    messages = [{"role": "user", "content": prompt}]
    response = client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=0,  # 模型输出的随机性,0 表示随机性最小
    )
    return response.choices[0].message.content
# prompt = build_prompt(prompt_template, info=results['documents'][0], query=user_query)
# print(prompt)
# response = get_completion(prompt)
# print(response)
##################################  基于向量检索的 RAG ##################
class RAG_Bot:
    def __init__(self, n_results=2):
        self.llm_api = get_completion
        self.n_results = n_results
    def createVectorDB(self, file):
        print(file)
        pdf_loader = PDFFileLoader(file)
        # 创建一个向量数据库对象
        self.vector_db = MyVectorDBConnector("demo", get_embeddings)
        # 向向量数据库中添加文档,灌入数据
        self.vector_db.add_documents(pdf_loader.getParagraphs())
    def chat(self, user_query):
        # 1. 检索
        search_results = self.vector_db.search(user_query,self.n_results)
        
        # 2. 构建 Prompt
        prompt = build_prompt(prompt_template, info=search_results['documents'][0], query=user_query)
        print("prompt===================>")
        print(prompt)
        
        # 3. 调用 LLM
        response = self.llm_api(prompt)
        return response
rag_bot = RAG_Bot()
rag_bot.createVectorDB("D:\GitHub\LEARN_LLM\RAG\如何向 ChatGPT 提问以获得高质量答案:提示技巧工程完全指南.pdf")
response = rag_bot.chat("什么是角色提示?")
print("response=====================>")
print(response)

6. 思考

RAG 是一个增强大模型垂直领域能力和减少幻觉的通用方法论,所以了解其原理和流程对实现出效果较好的大模型应用非常有用。

但是上面也可以看到,它也限制了大模型使用其自身的知识库去回答问题,只能够用给定的文本回复问题。这就导致这个RAG应用的通用性大大降低。

另外,从RAG流程中也可以看到要想实现的效果好,也是困难重重:

(1)预处理: 首先文本分割的块要恰到好处

  • 文本分割的粒度太小,查找到的参考文本较少
  • 文本颗粒度太大,参考文本太多,消耗token,同时也会带入更多的干扰信息,导致大模型出现幻觉的概率增加

(2)有些问题的回答是需要依赖上下文的,怎样将上下文所在的文本块都找出来也不容易

(3)召回正确性:召回文档的相关性也对结果比较重要。查找出的文档虽然与用户提问的向量值比较相似,但某些时候,最相似的并不一定是与问题答案相关的

(4)大模型本身的能力对结果也比较重要

目前针对以上各个困难都有非常多的研究,还在快速发展阶段,未形成一套通用、效果好的方法论。

后面可以针对这部分进行深入探索和学习,关注和整理当下最新的RAG调优方法。敬请期待。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张
  • 欢迎 点赞 + 关注 👏,促使我持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏
  • 踩坑不易,感谢关注和围观

本站文章一览:

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
6天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
38 3
|
8天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
40 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
7天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
36 10
|
8天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
5天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
6天前
|
存储 人工智能 固态存储
如何应对生成式AI和大模型应用带来的存储挑战
如何应对生成式AI和大模型应用带来的存储挑战
|
9天前
|
传感器 人工智能 算法
AI在农业中的应用:精准农业的发展
随着科技的发展,人工智能(AI)在农业领域的应用日益广泛,尤其在精准农业方面取得了显著成效。精准农业通过GPS、GIS、遥感技术和自动化技术,实现对农业生产过程的精确监测和控制,提高产量和品质,降低成本和环境影响。AI在作物生长监测、气候预测、智能农机、农产品品质检测和智能灌溉等方面发挥重要作用,推动农业向智能化、高效化和可持续化方向发展。尽管面临技术集成、数据共享等挑战,但未来前景广阔。
|
8天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗影像诊断中的应用
探索AI在医疗影像诊断中的应用
|
机器学习/深度学习 人工智能 算法
如果能在1分钟内训练出个AI模型,你想要什么?
随着人工智能的技术不断成熟,AI逐渐在各行业内落地,比如:在常见的安防监控领域,我们可以通过人脸识别去抓捕逃犯;在教育领域,我们可以使用OCR识别做拍题识别;在新零售领域,我们通过物体识别判断货品位置和数量;甚至在养猪场,我们都能用AI技术检测养猪的位置及数量。
1830 0
如果能在1分钟内训练出个AI模型,你想要什么?

热门文章

最新文章