【AI的未来 - AI Agent系列】【MetaGPT】6. 用ActionNode重写技术文档助手

简介: 【AI的未来 - AI Agent系列】【MetaGPT】6. 用ActionNode重写技术文档助手

前文【【AI的未来 - AI Agent系列】【MetaGPT】5. 更复杂的Agent实战 - 实现技术文档助手】我们用Action实现了一个技术文档助手,在学习了ActionNode技术之后,我们用ActionNode来尝试重写一下这个技术文档助手。

0. 前置推荐阅读

1. 重写WriteDirectory Action

根据我们之前的需求,WriteDirectory Action实现的其实就是根据用户输入的内容,直接去询问大模型,然后生成一份技术文档大纲目录。

1.1 实现WriteDirectory的ActionNode:DIRECTORY_WRITE

# 命令文本
DIRECTORY_STRUCTION = """
    You are now a seasoned technical professional in the field of the internet. 
    We need you to write a technical tutorial".
    您现在是互联网领域的经验丰富的技术专业人员。
    我们需要您撰写一个技术教程。
    """
# 实例化一个ActionNode,输入对应的参数
DIRECTORY_WRITE = ActionNode(
    # ActionNode的名称
    key="Directory Write",
    # 期望输出的格式
    expected_type=str,
    # 命令文本
    instruction=DIRECTORY_STRUCTION,
    # 例子输入,在这里我们可以留空
    example="",
 )

1.2 将 DIRECTORY_WRITE 包进 WriteDirectory中

class WriteDirectory(Action):
    
    language: str = "Chinese"
    
    def __init__(self, name: str = "", language: str = "Chinese", *args, **kwargs):
        super().__init__()
        self.language = language
        
    async def run(self, topic: str, *args, **kwargs) -> Dict:
        DIRECTORY_PROMPT = """
        The topic of tutorial is {topic}. Please provide the specific table of contents for this tutorial, strictly following the following requirements:
        1. The output must be strictly in the specified language, {language}.
        2. Answer strictly in the dictionary format like {{"title": "xxx", "directory": [{{"dir 1": ["sub dir 1", "sub dir 2"]}}, {{"dir 2": ["sub dir 3", "sub dir 4"]}}]}}.
        3. The directory should be as specific and sufficient as possible, with a primary and secondary directory.The secondary directory is in the array.
        4. Do not have extra spaces or line breaks.
        5. Each directory title has practical significance.
        教程的主题是{topic}。请按照以下要求提供本教程的具体目录:
        1. 输出必须严格符合指定语言,{language}。
        2. 回答必须严格按照字典格式,如{{"title": "xxx", "directory": [{{"dir 1": ["sub dir 1", "sub dir 2"]}}, {{"dir 2": ["sub dir 3", "sub dir 4"]}}]}}。
        3. 目录应尽可能具体和充分,包括一级和二级目录。二级目录在数组中。
        4. 不要有额外的空格或换行符。
        5. 每个目录标题都具有实际意义。
        """
        
        # 我们设置好prompt,作为ActionNode的输入
        prompt = DIRECTORY_PROMPT.format(topic=topic, language=self.language)
        # resp = await self._aask(prompt=prompt)
        # 直接调用ActionNode.fill方法,注意输入llm
        # 该方法会返回self,也就是一个ActionNode对象
        resp_node = await DIRECTORY_WRITE.fill(context=prompt, llm=self.llm, schema="raw")
        # 选取ActionNode.content,获得我们期望的返回信息
        resp = resp_node.content
        return OutputParser.extract_struct(resp, dict)

重点是这一句 resp_node = await DIRECTORY_WRITE.fill(context=prompt, llm=self.llm, schema="raw"),将原来的直接拿Prompt询问大模型获取结果,变成了使用ActionNode的fill函数,去内部询问大模型并获取结果。

2. 重写WriteContent Action

2.1 思考重写方案

WriteContent的目的是根据目录标题询问大模型,生成具体的技术文档内容。

最直观的重写方法:每个WriteContent包一个ActionNode,像WriteDirectory一样,如下图:

像不用ActionNode一样,每个WriteContent执行完毕返回结果到Role中进行处理和组装,然后执行下一个WriteContent Action。可能你也看出来了,这种重写方法其实就是将WriteContent直接调用大模型改成了使用ActionNode调用大模型,其它都没变。我认为这种重写方法的意义不大,没体现出ActionNode的作用和价值。

于是我想到了第二种重写方法,如下图:

将每一个章节内容的书写作为一个ActionNode,一起放到WriteContent动作里执行,这样外部Role只需执行一次WriteContent动作,所有内容就都完成了,可以实现ActionNode设计的初衷:突破需要在Role的_react内循环执行的限制,达到更好的CoT效果。

2.2 实现WriteContent的ActionNode

CONTENT_WRITE = ActionNode(
    key="Content Write",
    expected_type=str,
    instruction="",
    example="",
)

这里可以将instruction放空,后面用context设置prompt可以实现相同的效果。

2.3 改写WriteContent Action

主要修改点:

(1)初始化时接收一个ActionNode List,使用这个List初始化 self.node,作为父节点

(2)run方法中不再直接调用大模型,而是依次执行子节点的simple_fill函数获取结果

(3)在调用子节点的simple_fill函数前,记得更新prompt

(4)子节点返回的内容进行组装

(5)最后返回组装后的结果

更多代码细节注释请看下面:

class WriteContent(Action):
    """Action class for writing tutorial content.
    Args:
        name: The name of the action.
        directory: The content to write.
        language: The language to output, default is "Chinese".
    """
    language: str = "Chinese"
    directory: str = ""
    total_content: str = "" ## 组装所有子节点的输出
    
    def __init__(self, name: str = "", action_nodes: list = [], language: str = "Chinese", *args, **kwargs):
        super().__init__()
        self.language = language
        self.node = ActionNode.from_children("WRITE_CONTENT_NODES", action_nodes) ## 根据传入的action_nodes列表,生成一个父节点
    async def run(self, topic: str, *args, **kwargs) -> str:
        COMMON_PROMPT = """
        You are now a seasoned technical professional in the field of the internet. 
        We need you to write a technical tutorial with the topic "{topic}".
        """
        CONTENT_PROMPT = COMMON_PROMPT + """
        Now I will give you the module directory titles for the topic. 
        Please output the detailed principle content of this title in detail. 
        If there are code examples, please provide them according to standard code specifications. 
        Without a code example, it is not necessary.
        The module directory titles for the topic is as follows:
        {directory}
        Strictly limit output according to the following requirements:
        1. Follow the Markdown syntax format for layout.
        2. If there are code examples, they must follow standard syntax specifications, have document annotations, and be displayed in code blocks.
        3. The output must be strictly in the specified language, {language}.
        4. Do not have redundant output, including concluding remarks.
        5. Strict requirement not to output the topic "{topic}".
        """
        
        for _, i in self.node.children.items():
            time.sleep(20) ## 避免OpenAI的API调用频率过高
            prompt = CONTENT_PROMPT.format(
                topic=topic, language=self.language, directory=i.key)
            i.set_llm(self.llm) ## 这里要设置一下llm,即使设置为None,也可以正常工作,但不设置就没法正常工作
            ## 为子节点设置context,也就是Prompt,ActionNode中我们将instruction放空,instruction和context都会作为prompt给大模型
            ## 所以两者有一个为空也没关系,只要prompt完整就行
            i.set_context(prompt)
            child = await i.simple_fill(schema="raw", mode="auto") ## 这里的schema注意写"raw"
            self.total_content += child.content ## 组装所有子节点的输出
        logger.info("writecontent:", self.total_content)
        return self.total_content

3. 改写TutorialAssistant Role

TutorialAssistant Role的作用是执行以上两个Action,输出最终结果。改写内容如下:

(1)将原本的生成Action List改为生成ActionNode List

  • 注意细节:生成的ActionNode的key为每个章节的目录标题,在WriteContent中更新每个node的prompt时使用了

(2)将ActionNode List传给WriteContent Action进行WriteContent Action的初始化

(3)将WriteContent初始化到Role的动作中

  • 注意细节:这里不再是之前每个first_dir创建一个WriteContent了,而是最后只初始化一个。

更多代码细节注释请看下面:

async def _handle_directory(self, titles: Dict) -> Message:
        self.main_title = titles.get("title")
        directory = f"{self.main_title}\n"
        self.total_content += f"# {self.main_title}"
        action_nodes = list()
        for first_dir in titles.get("directory"):
            logger.info(f"================== {first_dir}")
            action_nodes.append(ActionNode( ## 每个章节初始化一个ActionNode
                key=f"{first_dir}",  ## 注意key为本章目录标题
                expected_type=str,
                instruction="",
                example=""))
            key = list(first_dir.keys())[0]
            directory += f"- {key}\n"
            for second_dir in first_dir[key]:
                directory += f"  - {second_dir}\n"
        
        self._init_actions([WriteContent(language=self.language, action_nodes=action_nodes)]) ## 初始化一个WriteContent Action,不是多个了
        self.rc.todo = None
        return Message(content=directory)

4. 完整代码及执行结果

# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
import asyncio
import re
import time
from typing import Dict
from metagpt.actions.action import Action
from metagpt.actions.action_node import ActionNode
from metagpt.logs import logger
from metagpt.roles import Role
from metagpt.schema import Message
from metagpt.utils.common import OutputParser
from metagpt.const import TUTORIAL_PATH
from datetime import datetime
from metagpt.utils.file import File
# 命令文本
DIRECTORY_STRUCTION = """
    You are now a seasoned technical professional in the field of the internet. 
    We need you to write a technical tutorial".
    您现在是互联网领域的经验丰富的技术专业人员。
    我们需要您撰写一个技术教程。
    """
# 实例化一个ActionNode,输入对应的参数
DIRECTORY_WRITE = ActionNode(
    # ActionNode的名称
    key="Directory Write",
    # 期望输出的格式
    expected_type=str,
    # 命令文本
    instruction=DIRECTORY_STRUCTION,
    # 例子输入,在这里我们可以留空
    example="",
 )
CONTENT_WRITE = ActionNode(
    key="Content Write",
    expected_type=str,
    instruction="",
    example="",
)
class WriteDirectory(Action):
    
    language: str = "Chinese"
    
    def __init__(self, name: str = "", language: str = "Chinese", *args, **kwargs):
        super().__init__()
        self.language = language
        
    async def run(self, topic: str, *args, **kwargs) -> Dict:
        DIRECTORY_PROMPT = """
        The topic of tutorial is {topic}. Please provide the specific table of contents for this tutorial, strictly following the following requirements:
        1. The output must be strictly in the specified language, {language}.
        2. Answer strictly in the dictionary format like {{"title": "xxx", "directory": [{{"dir 1": ["sub dir 1", "sub dir 2"]}}, {{"dir 2": ["sub dir 3", "sub dir 4"]}}]}}.
        3. The directory should be as specific and sufficient as possible, with a primary and secondary directory.The secondary directory is in the array.
        4. Do not have extra spaces or line breaks.
        5. Each directory title has practical significance.
        教程的主题是{topic}。请按照以下要求提供本教程的具体目录:
        1. 输出必须严格符合指定语言,{language}。
        2. 回答必须严格按照字典格式,如{{"title": "xxx", "directory": [{{"dir 1": ["sub dir 1", "sub dir 2"]}}, {{"dir 2": ["sub dir 3", "sub dir 4"]}}]}}。
        3. 目录应尽可能具体和充分,包括一级和二级目录。二级目录在数组中。
        4. 不要有额外的空格或换行符。
        5. 每个目录标题都具有实际意义。
        """
        
        # 我们设置好prompt,作为ActionNode的输入
        prompt = DIRECTORY_PROMPT.format(topic=topic, language=self.language)
        # resp = await self._aask(prompt=prompt)
        # 直接调用ActionNode.fill方法,注意输入llm
        # 该方法会返回self,也就是一个ActionNode对象
        resp_node = await DIRECTORY_WRITE.fill(context=prompt, llm=self.llm, schema="raw")
        # 选取ActionNode.content,获得我们期望的返回信息
        resp = resp_node.content
        return OutputParser.extract_struct(resp, dict)
class WriteContent(Action):
    """Action class for writing tutorial content.
    Args:
        name: The name of the action.
        directory: The content to write.
        language: The language to output, default is "Chinese".
    """
    language: str = "Chinese"
    directory: str = ""
    total_content: str = "" ## 组装所有子节点的输出
    
    def __init__(self, name: str = "", action_nodes: list = [], language: str = "Chinese", *args, **kwargs):
        super().__init__()
        self.language = language
        self.node = ActionNode.from_children("WRITE_CONTENT_NODES", action_nodes) ## 根据传入的action_nodes列表,生成一个父节点
    async def run(self, topic: str, *args, **kwargs) -> str:
        COMMON_PROMPT = """
        You are now a seasoned technical professional in the field of the internet. 
        We need you to write a technical tutorial with the topic "{topic}".
        """
        CONTENT_PROMPT = COMMON_PROMPT + """
        Now I will give you the module directory titles for the topic. 
        Please output the detailed principle content of this title in detail. 
        If there are code examples, please provide them according to standard code specifications. 
        Without a code example, it is not necessary.
        The module directory titles for the topic is as follows:
        {directory}
        Strictly limit output according to the following requirements:
        1. Follow the Markdown syntax format for layout.
        2. If there are code examples, they must follow standard syntax specifications, have document annotations, and be displayed in code blocks.
        3. The output must be strictly in the specified language, {language}.
        4. Do not have redundant output, including concluding remarks.
        5. Strict requirement not to output the topic "{topic}".
        """
        
        for _, i in self.node.children.items():
            time.sleep(20) ## 避免OpenAI的API调用频率过高
            prompt = CONTENT_PROMPT.format(
                topic=topic, language=self.language, directory=i.key)
            i.set_llm(self.llm) ## 这里要设置一下llm,即使设置为None,也可以正常工作,但不设置就没法正常工作
            ## 为子节点设置context,也就是Prompt,ActionNode中我们将instruction放空,instruction和context都会作为prompt给大模型
            ## 所以两者有一个为空也没关系,只要prompt完整就行
            i.set_context(prompt)
            child = await i.simple_fill(schema="raw", mode="auto") ## 这里的schema注意写"raw"
            self.total_content += child.content ## 组装所有子节点的输出
        logger.info("writecontent:", self.total_content)
        return self.total_content
class TutorialAssistant(Role):
    
    topic: str = ""
    main_title: str = ""
    total_content: str = ""
    language: str = "Chinese"
    def __init__(
        self,
        name: str = "Stitch",
        profile: str = "Tutorial Assistant",
        goal: str = "Generate tutorial documents",
        constraints: str = "Strictly follow Markdown's syntax, with neat and standardized layout",
        language: str = "Chinese",
    ):
        super().__init__()
        self._init_actions([WriteDirectory(language=language)])
        self.language = language
    async def _think(self) -> None:
        """Determine the next action to be taken by the role."""
        logger.info(self.rc.state)
        # logger.info(self,)
        if self.rc.todo is None:
            self._set_state(0)
            return
        if self.rc.state + 1 < len(self.states):
            self._set_state(self.rc.state + 1)
        else:
            self.rc.todo = None
    async def _handle_directory(self, titles: Dict) -> Message:
        self.main_title = titles.get("title")
        directory = f"{self.main_title}\n"
        self.total_content += f"# {self.main_title}"
        action_nodes = list()
        # actions = list()
        for first_dir in titles.get("directory"):
            logger.info(f"================== {first_dir}")
            action_nodes.append(ActionNode(
                key=f"{first_dir}",
                expected_type=str,
                instruction="",
                example=""))
            key = list(first_dir.keys())[0]
            directory += f"- {key}\n"
            for second_dir in first_dir[key]:
                directory += f"  - {second_dir}\n"
        
        self._init_actions([WriteContent(language=self.language, action_nodes=action_nodes)])
        self.rc.todo = None
        return Message(content=directory)
    async def _act(self) -> Message:
        """Perform an action as determined by the role.
        Returns:
            A message containing the result of the action.
        """
        todo = self.rc.todo
        if type(todo) is WriteDirectory:
            msg = self.rc.memory.get(k=1)[0]
            self.topic = msg.content
            resp = await todo.run(topic=self.topic)
            logger.info(resp)
            return await self._handle_directory(resp)
        resp = await todo.run(topic=self.topic)
        logger.info(resp)
        if self.total_content != "":
            self.total_content += "\n\n\n"
        self.total_content += resp
        return Message(content=resp, role=self.profile)
    async def _react(self) -> Message:
        """Execute the assistant's think and actions.
        Returns:
            A message containing the final result of the assistant's actions.
        """
        while True:
            await self._think()
            if self.rc.todo is None:
                break
            msg = await self._act()
        root_path = TUTORIAL_PATH / datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
        logger.info(f"Write tutorial to {root_path}")
        await File.write(root_path, f"{self.main_title}.md", self.total_content.encode('utf-8'))
        return msg
async def main():
    msg = "Git 教程"
    role = TutorialAssistant()
    logger.info(msg)
    result = await role.run(msg)
    logger.info(result)
asyncio.run(main())
  • 执行结果

下一篇继续实战ActionNode:【AI Agent系列】【MetaGPT】7. 实战:只用两个字,让MetaGPT写一篇小说

相关文章
|
7天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
8天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
19 3
|
9天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
55 4
|
22天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
156 6
|
1月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
117 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
1月前
|
机器学习/深度学习 人工智能 算法
打造你的超级Agent智能体——在虚拟迷宫中智斗未知,解锁AI进化之谜的惊心动魄之旅!
【10月更文挑战第5天】本文介绍了一个基于强化学习的Agent智能体项目实战,通过控制Agent在迷宫环境中找到出口来完成特定任务。文章详细描述了环境定义、Agent行为及Q-learning算法的实现。使用Python和OpenAI Gym框架搭建迷宫环境,并通过训练得到的Q-table测试Agent表现。此项目展示了构建智能体的基本要素,适合初学者理解Agent概念及其实现方法。
86 9
|
1月前
|
人工智能 算法 决策智能
面向软件工程的AI智能体最新进展,复旦、南洋理工、UIUC联合发布全面综述
【10月更文挑战第9天】近年来,基于大型语言模型(LLM)的智能体在软件工程领域展现出显著成效。复旦大学、南洋理工大学和伊利诺伊大学厄巴纳-香槟分校的研究人员联合发布综述,分析了106篇论文,探讨了这些智能体在需求工程、代码生成、静态代码检查、测试、调试及端到端软件开发中的应用。尽管表现出色,但这些智能体仍面临复杂性、性能瓶颈和人机协作等挑战。
81 1
|
2月前
|
人工智能
AI工具:Gnomic智能体
AI工具:Gnomic智能体
45 0
|
3月前
|
存储 人工智能
|
2月前
|
人工智能 JSON 数据格式
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
【9月更文挑战第6天】RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验
RAG+Agent人工智能平台:RAGflow实现GraphRA知识库问答,打造极致多模态问答与AI编排流体验