【AI的未来 - AI Agent系列】【MetaGPT】4.1 细说我在ActionNode实战中踩的那些坑

简介: 【AI的未来 - AI Agent系列】【MetaGPT】4.1 细说我在ActionNode实战中踩的那些坑

上篇文章 【AI的未来 - AI Agent系列】【MetaGPT】4. ActionNode从理论到实战 中我们学习了MetaGPT中ActionNode的理论和基本用法,跑通了一个简单程序。

原理和代码实现都很简单,但是谁知道当时我遇到了多少坑… 本文带你看看我在上文中遇到的坑,希望能帮到你!

下面说下我遇到的坑:

1. MetaGPT = 0.5.2 版本的坑

听信了官方教程中的MetaGPT版本推荐,我之前的学习和实战都使用了0.5.2版本,所以一开始,ActionNode的学习也使用的此版本。

1.1 坑一:cannot import name “ActionNode” from “metagpt.actions.action”

  • 不知道为什么0.5.2版本无法从"metagpt.actions.action"导入ActionNode,看源码中,action_nodes.py是存在的

  • 解决方案:改为从 metagpt.actions.action_node 导入 ActionNode
# from metagpt.actions.action import Action, ActionNode
from metagpt.actions.action import Action
from metagpt.actions.action_node import ActionNode

1.2 坑二:simple_fill 没有参数 schema

  • 查看0.5.2版本的源码,simple_fill 的输入参数还叫 ‘to’,不叫 ‘schema’

  • 解决方案:schema 改为 to
# child = await i.simple_fill(schema=schema, mode=mode)
child = await i.simple_fill(to=schema, mode=mode)

1.3 坑三:ActionNode一直在循环执行,

如下图:一直在输出,这个都是ActionNode内的打印。

这个坑,是在ActionNode中循环,退不到我的代码中,所以我无从下手解决。促使了我升级到最新github代码… 后来我在高版本中遇到类似问题,好像是因为结果校验不通过,触发了重试。

2. 升级成 MetaGPT GitHub最新源码(2024-01-16)之后的坑

2.1 坑一:no attribute ‘_rc’

  • 从0.6版本开始,_rc这种成员变量都换成了不带下划线的:‘rc’
  • 解决方案:将 ‘_rc’ 全部换成 ‘rc’

2.2 坑二:no attribute ‘_states’

  • 解决方法同’rc’,将’_states’ 改为 ‘states’

2.3 坑三:‘gpt-4-1106-preview’ does not exist or you do not have access to it

  • 原因:前面讲过,MetaGPT读取配置的顺序:key.yaml > config.yaml > 环境变量。当我升级到github最新代码,源码编译后,源码中存在了config.yaml文件,里面默认的配置是gpt4。MetaGPT默认使用了config.yaml,我的环境变量便被忽略了。
  • 解决方案:在config.yaml中设置自己的配置。或者新建一个key.yaml来写自己的配置

2.4 坑四:A non-annotated attribute was detected: ‘input_num = 0’

这个是因为升级0.6版本后,0.6版本的校验更加严格,这类内的成员变量必须显式声明类型,否则会报错。

  • 解决方案
class SimplePrint(Action):
    input_num: int = 0 ######## <------ 加上这一句,显式声明变量类型
    def __init__(self, name="SimplePrint", input_num:int=0):
        super().__init__()
        self.input_num = input_num

还有几个坑忘记截图了… 不过上面也基本够了,应该能帮你省不少事儿~~~

相关文章
|
4月前
|
SQL 人工智能 关系型数据库
AI Agent的未来之争:任务规划,该由人主导还是AI自主?——阿里云RDS AI助手的最佳实践
AI Agent的规划能力需权衡自主与人工。阿里云RDS AI助手实践表明:开放场景可由大模型自主规划,高频垂直场景则宜采用人工SOP驱动,结合案例库与混合架构,实现稳定、可解释的企业级应用,推动AI从“能聊”走向“能用”。
1075 39
AI Agent的未来之争:任务规划,该由人主导还是AI自主?——阿里云RDS AI助手的最佳实践
|
4月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
5801 80
|
4月前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
509 115
|
4月前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
494 117
|
4月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
803 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
4月前
|
存储 人工智能 搜索推荐
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
833 10
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
|
4月前
|
人工智能 IDE 开发工具
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
|
4月前
|
数据采集 人工智能 JSON
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
|
4月前
|
人工智能 监控 Java
Spring AI Alibaba实践|后台定时Agent
基于Spring AI Alibaba框架,可构建自主运行的AI Agent,突破传统Chat模式限制,支持定时任务、事件响应与人工协同,实现数据采集、分析到决策的自动化闭环,提升企业智能化效率。
Spring AI Alibaba实践|后台定时Agent

热门文章

最新文章