【AI的未来 - AI Agent系列】【MetaGPT】4. ActionNode从理论到实战

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【AI的未来 - AI Agent系列】【MetaGPT】4. ActionNode从理论到实战

0. ActionNode基础

0.1 官方解释

在MG框架0.5版本中,新增加了ActionNode类,为Agent的动作执行提供更强的能力

ActionNode可以被视为一组动作树,根据类内定义,一个动作树的父节点可以访问所有的子动作节点;也就是说,定义了一个完整的动作树之后,可以从父节点按树的结构顺序执行每一个子动作节点。因此,动作的执行也可以突破0.4版本框架中,需要在Role的_react内循环执行的限制,达到更好的CoT效果。

0.2 我的理解

如下图,ActionNode需要内置在Action中使用,之前可能是Action就是一个动作,执行完一个就执行完下一个。有了ActionNode后,Action就不只是一个动作,而可能是一系列动作。这一系列动作可以组织成链式结构,或者树状结构或者更复杂的结构。

0.3 ActionNode的数据结构

schema: str  # raw/json/markdown, default: ""
# Action Context
context: str  # all the context, including all necessary info
llm: BaseLLM  # LLM with aask interface
children: dict[str, "ActionNode"]
# Action Input
key: str  # Product Requirement / File list / Code
expected_type: Type  # such as str / int / float etc.
# context: str  # everything in the history.
instruction: str  # the instructions should be followed.
example: Any  # example for In Context-Learning.
# Action Output
content: str
instruct_content: BaseModel

其中几个重要的成员变量(以我目前浅显使用过的例子来看):

  • instruction:一般是prompt的部分内容
  • key:一般是ActionNode的名字
  • schema:指定该ActionNode的输出格式,指定为json或markdown之后会有严格的校验
  • expected_type:期望返回格式,例如str
  • example:类似prompt中的few-shot,给几个期望输出的例子

0.4 如何使用ActionNode

下面是官方教程给的例子:

# 定义单个子节点ActionNode
UI_DESIGN_DESC = ActionNode(
    key="UI Design Desc",
    expected_type=str,
    instruction="place the design objective here",
    example="Snake games are classic and addictive games with simple yet engaging elements. Here are the main elements"
    " commonly found in snake games",
)
# 定义完所有ActionNode之后,将其存放在一个List里面
NODES = [
    UI_DESIGN_DESC,
    SELECTED_ELEMENTS,
    HTML_LAYOUT,
    CSS_STYLES,
    ANYTHING_UNCLEAR,
]
# 将上述List的所有子节点传入父节点UI_DESIGN_NODE中
UI_DESIGN_NODE = ActionNode.from_children("UI_DESIGN", NODES)

从上面代码看到,使用ActionNode的步骤很简单,如下

(1)定义一系列ActionNode

(2)根据一系列ActionNode构造父ActionNode

之后,在Action.run方法中,调用父节点的执行方法fill,获取所有子节点按顺序执行之后的结果

ui_describe = await UI_DESIGN_NODE.fill(prompt)

上面我重点标出了"在Action.run方法中",说明ActionNode一定是依附在Action中运行的,在Action外不能独立运行?

1. ActionNode简单实战

上面了解了ActionNode的定义方法,以及运行fill函数,下面以一个简单的例子,实战一下。实战内容为 《MetaGPT智能体开发入门》课程中的例子:打印前10个斐波那契数列的数字,实现内容如下:

  • (1)LLM要能以特定的可解析的格式来返回斐波那契数列
  • (2)通过格式解析实现逐个打印数字的效果。

不重要:斐波那契数列是一个数列,每个数都是前两个数的和,通常以0和1开始

1.1 思考并返回特定格式的数字

将第一个实现内容(LLM要能以特定的可解析的格式来返回斐波那契数列)拆解:

  • (1)思考前10个斐波那契数列的数字是什么
  • (2)思考到的数字按特定格式输出

这就可以用两个ActionNode来实现。下面我们具体来实现。

1.1.1 定义两个ActionNode
# 将思考斐波那契数列的10个数字作为prompt输入,在这里我们将“思考需要生成的数字列表”作为命令(instruction)写入
# 将期望返回格式(expected_type)设置为str,无需设置例子(example)
SIMPLE_THINK_NODE = ActionNode(
    key="Simple Think Node",
    expected_type=str,
    instruction="""
            Think about what list of numbers you need to generate
            """,
    example=""
)
# 在这里通过命令(instruction)来规定需要生成的数字列表格式,提供例子(example)来帮助LLM理解
SIMPLE_CHECK_NODE = ActionNode(
    key="Simple CHECK Node",
    expected_type=str,
    instruction="""
            Please provide the number list for me, strictly following the following requirements:
            1. Answer strictly in the list format like [1,2,3,4]
            2. Do not have extra spaces or line breaks.
            Return the list here:
            """,
    example="[1,2,3,4]"
            "[4,5,6]",
 )
1.1.2 为这两个动作节点设置一个父节点
class THINK_NODES(ActionNode):
    def __init__(self, name="Think Nodes", expected_type=str, instruction="", example=""):
        super().__init__(key=name, expected_type=expected_type, instruction=instruction, example=example)
        self.add_children([SIMPLE_THINK_NODE, SIMPLE_CHECK_NODE])    # 初始化过程,将上面实现的两个子节点加入作为THINK_NODES类的子节点
    async def fill(self, context, llm, schema="raw", mode="auto", strgy="complex"):
        self.set_llm(llm)
        self.set_context(context)
        if self.schema:
            schema = self.schema
        if strgy == "simple":
            return await self.simple_fill(schema=schema, mode=mode)
        elif strgy == "complex":
            # 这里隐式假设了拥有children
            child_context = context    # 输入context作为第一个子节点的context
            for _, i in self.children.items():
                i.set_context(child_context)    # 为子节点设置context
                child = await i.simple_fill(schema=schema, mode=mode)
                child_context = child.content    # 将返回内容(child.content)作为下一个子节点的context
            self.content = child_context    # 最后一个子节点返回的内容设置为父节点返回内容(self.content)
            return self

为什么需要设置父节点?

  • ActionNode的 fill 方法,有一个参数叫“strgy”,当我们将这个参数设置为“complex”时,这个方法会按顺序执行每一个子节点,并将上一个子节点返回的内容作为下一个子节点的prompt。为了将两个动作节点串联起来,形成一个简单的CoT效果,我们需要设置一个父节点。
1.1.3 定义一个Action来承载上面的ActionNode

前文已经说了,ActionNode的运行需要依赖Action的动作,所以这里需要定义一个Action:

class ThinkAction(Action):
    def __init__(self, name="ThinkAction", context=None, llm=None):
        super().__init__()
        self.node = THINK_NODES()    # 初始化Action时,初始化一个THINK_NODE实例并赋值给self.node
    async def run(self, instruction) -> list:
        PROMPT = """
            You are now a number list generator, follow the instruction {instruction} and 
            generate a number list to be printed please.
            """
        prompt = PROMPT.format(instruction=instruction)
        rsp_node = await self.node.fill(context=prompt, llm=self.llm, schema="raw",
                                        strgy="complex")  # 1. 运行子节点,获取返回(返回格式为ActionNode)(注意设置 schema="raw") 2. 注意strgy为complex,表示执行所有子节点,如果是"simple", 则只会执行父节点本身
        rsp = rsp_node.content  # 获取返回的文本内容,返回的是ActionNode,通过.content来获取实际内容
        rsp_match = self.find_in_brackets(rsp)  # 按列表格式解析返回的文本内容,定位“[”与“]”之间的内容
        try:
            rsp_list = list(map(int, rsp_match[0].split(',')))  # 按列表格式解析返回的文本内容,按“,”对内容进行分割,并形成一个python语法中的列表
            return rsp_list
        except:
            return []
    @staticmethod
    def find_in_brackets(s):
        pattern = r'\[(.*?)\]'
        match = re.findall(pattern, s)
        return match

这个Action的几个重点关注点:

  • (1)初始化中self.node = THINK_NODES(),将ActionNode依附在Action中。
  • (2)Action的run方法中执行ActionNode的动作:await self.node.fill(context=prompt, llm=self.llm, schema="raw", strgy="complex")
  • 其中注意schema为"raw"
  • strgy为“complex”,表示会执行完 THINK_NODES()中的所有子节点才会返回

1.2 逐个打印数字

上面的程序将前10个数字解析出来并形成了Python中的list数组。下面实现逐个打印的Action

class SimplePrint(Action):
    input_num: int = 0
    def __init__(self, name="SimplePrint", input_num:int=0):
        super().__init__()
        self.input_num = input_num
    async def run(self):
        print(str(self.input_num) + "\n")
        return str(self.input_num)

1.3 实现Role,执行Action

有了Action,需要有个Role执行它。Role的代码和细节注释如下:

class Printer(Role):
    def __init__(self, name="TXXZ", profile="Printer", goal="Print the number", constraints=""):
        super().__init__()
        self._init_actions([ThinkAction]) ## 1. 将Action加入Role的执行列表
    async def _think(self) -> None:
        """Determine the action"""
        if self.rc.todo is None:
            self._set_state(0)
            return
        if self.rc.state + 1 < len(self.states):
            self._set_state(self.rc.state + 1)
        else:
            self.rc.todo = None
    async def _prepare_print(self, num_list:list) -> Message:
        """Add actions"""
        actions = list()
        for num in num_list: ## 2. 对于Action返回的数组,逐个添加SimplePrint动作
            actions.append(SimplePrint(input_num=num))
        self._init_actions(actions) ## 4. 这里第一个action变成了SimplePrint动作
        self.rc.todo = None ## 3. 为None时,_think函数会回到第一个action执行
        return Message(content=str(num_list))
    async def _act(self) -> Message:
        """Action"""
        todo = self.rc.todo
        if type(todo) is ThinkAction :
            msg = self.rc.memory.get(k=1)[0]
            self.goal = msg.content
            resp = await todo.run(instruction=self.goal) # 7. 个人感觉这里的goal有和没有都没关系,虽然作为prompt传入ThinkAction,但是这里并不是打印Action,与任务无关
            return await self._prepare_print(resp) ## 5. ActionNode都执行完了,返回的是个数组,逐个去添加打印Action
        resp = await todo.run() ## 6. 执行打印Action
        return Message(content=resp, role=self.profile)
    async def _react(self) -> Message:
        while True:
            await self._think()
            if self.rc.todo is None:
                break
            msg = await self._act()
        return msg

2. 完整代码和运行效果

2.1 完整代码

# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
import asyncio
import re
from metagpt.actions.action import Action, ActionNode
from metagpt.logs import logger
from metagpt.roles import Role
from metagpt.schema import Message
# 将思考斐波那契数列的10个数字作为prompt输入,在这里我们将“思考需要生成的数字列表”作为命令(instruction)写入
# 将期望返回格式(expected_type)设置为str,无需设置例子(example)
SIMPLE_THINK_NODE = ActionNode(
    key="Simple Think Node",
    expected_type=str,
    instruction="""
            Think about what list of numbers you need to generate
            """,
    example=""
)
# 在这里通过命令(instruction)来规定需要生成的数字列表格式,提供例子(example)来帮助LLM理解
SIMPLE_CHECK_NODE = ActionNode(
    key="Simple CHECK Node",
    expected_type=str,
    instruction="""
            Please provide the number list for me, strictly following the following requirements:
            1. Answer strictly in the list format like [1,2,3,4]
            2. Do not have extra spaces or line breaks.
            Return the list here:
            """,
    example="[1,2,3,4]"
            "[4,5,6]",
 )
class THINK_NODES(ActionNode):
    def __init__(self, name="Think Nodes", expected_type=str, instruction="", example=""):
        super().__init__(key=name, expected_type=expected_type, instruction=instruction, example=example)
        self.add_children([SIMPLE_THINK_NODE, SIMPLE_CHECK_NODE])    # 初始化过程,将上面实现的两个子节点加入作为THINK_NODES类的子节点
    async def fill(self, context, llm, schema="raw", mode="auto", strgy="complex"):
        self.set_llm(llm)
        self.set_context(context)
        if self.schema:
            schema = self.schema
        if strgy == "simple":
            return await self.simple_fill(schema=schema, mode=mode)
        elif strgy == "complex":
            # 这里隐式假设了拥有children
            child_context = context    # 输入context作为第一个子节点的context
            for _, i in self.children.items():
                i.set_context(child_context)    # 为子节点设置context
                child = await i.simple_fill(schema=schema, mode=mode)
                child_context = child.content    # 将返回内容(child.content)作为下一个子节点的context
            self.content = child_context    # 最后一个子节点返回的内容设置为父节点返回内容(self.content)
            return self
class SimplePrint(Action):
    """
    Action that print the num inputted
    """
    input_num: int = 0
    def __init__(self, name="SimplePrint", input_num:int=0):
        super().__init__()
        self.input_num = input_num
    async def run(self):
        print(str(self.input_num) + "\n")
        return str(self.input_num)
class ThinkAction(Action):
    """
    Action that think
    """
    def __init__(self, name="ThinkAction", context=None, llm=None):
        super().__init__()
        self.node = THINK_NODES()    # 初始化Action时,初始化一个THINK_NODE实例并赋值给self.node
    async def run(self, instruction) -> list:
        PROMPT = """
            You are now a number list generator, follow the instruction {instruction} and 
            generate a number list to be printed please.
            """
        prompt = PROMPT.format(instruction=instruction)
        rsp_node = await self.node.fill(context=prompt, llm=self.llm, schema="raw",
                                        strgy="complex")  # 运行子节点,获取返回(返回格式为ActionNode)(注意设置 schema="raw" )
        rsp = rsp_node.content  # 获取返回的文本内容
        rsp_match = self.find_in_brackets(rsp)  # 按列表格式解析返回的文本内容,定位“[”与“]”之间的内容
        try:
            rsp_list = list(map(int, rsp_match[0].split(',')))  # 按列表格式解析返回的文本内容,按“,”对内容进行分割,并形成一个python语法中的列表
            return rsp_list
        except:
            return []
    @staticmethod
    def find_in_brackets(s):
        pattern = r'\[(.*?)\]'
        match = re.findall(pattern, s)
        return match
class Printer(Role):
    def __init__(self, name="Jerry", profile="Printer", goal="Print the number", constraints=""):
        super().__init__()
        self._init_actions([ThinkAction])
        # self.num_list = list()
    async def _think(self) -> None:
        """Determine the action"""
        # logger.info(self.rc.state)
        if self.rc.todo is None:
            self._set_state(0)
            return
        if self.rc.state + 1 < len(self.states):
            self._set_state(self.rc.state + 1)
        else:
            self.rc.todo = None
    async def _prepare_print(self, num_list:list) -> Message:
        """Add actions"""
        actions = list()
        for num in num_list:
            actions.append(SimplePrint(input_num=num))
        self._init_actions(actions)
        self.rc.todo = None
        return Message(content=str(num_list))
    async def _act(self) -> Message:
        """Action"""
        todo = self.rc.todo
        if type(todo) is ThinkAction :
            msg = self.rc.memory.get(k=1)[0]
            self.goal = msg.content
            resp = await todo.run(instruction=self.goal)
            # logger.info(resp)
            return await self._prepare_print(resp)
        resp = await todo.run()
        # logger.info(resp)
        return Message(content=resp, role=self.profile)
    async def _react(self) -> Message:
        """"""
        while True:
            await self._think()
            if self.rc.todo is None:
                break
            msg = await self._act()
        return msg
async def main():
    msg = "Provide the first 10 numbers of the Fibonacci series"
    role = Printer()
    logger.info(msg)
    result = await role.run(msg)
    logger.info(result)
if __name__ == '__main__':
    asyncio.run(main())

2.2 运行效果

本文代码是经过修改的,可以直接运行。

  • 前提:使用 MetaGPT 0.6+ 的版本,我这里用的是github最新代码(2024-01-16),源码编译的。

未完待续… 请移步下篇文章 【AI的未来 - AI Agent系列】【MetaGPT】4.1 细说我在ActionNode实战中踩的那些坑

带你绕过很多坑!

相关文章
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
111 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
10天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
93 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
11天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
74 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
7天前
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
35 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
11天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
MetaGPT开源SELA,用AI设计AI,效果超越OpenAI使用的AIDE
MetaGPT团队开源了Tree-Search Enhanced LLM Agents(SELA)系统,通过蒙特卡罗树搜索(MCTS)优化AutoML过程,显著提升了机器学习模型的构建效率和性能。SELA在20个数据集上的实验结果表明,其性能优于传统AutoML方法和基于LLM的代理,为AutoML领域带来了新的突破。
20 4
|
13天前
|
人工智能 自然语言处理 算法
AI时代的企业内训全景图:从案例到实战
作为一名扎根在HR培训领域多年的“老兵”,我越来越清晰地感受到,企业内训的本质其实是为企业持续“造血”。无论是基础岗的新人培训、技能岗的操作规范培训,还是面向技术中坚力量的高阶技术研讨,抑或是管理层的战略思维提升课,内训的价值都是在帮助企业内部提升能力水平,进而提高组织生产力,减少对外部资源的依赖。更为重要的是,在当前AI、大模型、Embodied Intelligence等新兴技术快速迭代的背景下,企业必须不断为人才升级赋能,才能在市场竞争中保持领先。
|
19天前
|
人工智能 自然语言处理 JavaScript
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
66 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
|
1月前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
124 13
AI经营|多Agent择优生成商品标题
|
18天前
|
人工智能 自然语言处理 数据挖掘
田渊栋团队新作祭出Agent-as-a-Judge!AI智能体自我审判,成本暴跌97%
田渊栋团队提出Agent-as-a-Judge框架,利用智能体自身评估其他智能体的性能,不仅关注最终结果,还能提供中间反馈,更全面准确地反映智能体的真实能力。该框架在DevAI基准测试中表现出色,成本效益显著,为智能体的自我改进提供了有力支持。
35 7
下一篇
DataWorks