【AI的未来 - AI Agent系列】【MetaGPT】0. 你的第一个MetaGPT程序

简介: 【AI的未来 - AI Agent系列】【MetaGPT】0. 你的第一个MetaGPT程序

《MetaGPT智能体开发入门》开课,跟着课程,学习MetaGPT智能体开发。

0. 安装MetaGPT

请确保你的系统已安装Python 3.9+。你可以通过以下命令进行检查:

python3 --version

下面是具体的安装命令:

  • 安装命令
pip install metagpt
  • 如果想安装特定版本
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple metagpt==0.5.2
  • 如果想更新最新的版本和使用最新功能
pip install git+https://github.com/geekan/MetaGPT
  • 想看源代码,使用源代码
git clone https://github.com/geekan/MetaGPT.git
cd /your/path/to/MetaGPT
pip install -e .

1. 配置MetaGPT

这里使用OpenAI API,所以你首先需要有一个OpenAI的Key。

配置的内容包括三个:

  • OPENAI_API_KEY:你的OpenAI Key
  • OPENAI_API_MODEL:将要使用的大模型,例如“gpt-3.5-turbo”
  • OPENAI_API_BASE:服务地址,如果用中转服务,必填

下面将配置的内容加入工程中。MetaGPT官方提供的配置方式有3种:

  • 环境变量
  • config/key.yaml
  • config/config.yaml

MetaGPT将会按照下述优先级来读取你的配置:config/key.yaml > config/config.yaml > environment variable

我这里使用环境变量的方式。

(1)创建一个工程目录 MyMetaGPT,用VSCode打开

(2)新建一个.env文件,将以上配置填加到该文件中

在Python文件(MetaGPT_test.py)中将该.env文件设置的内容加载到环境变量中:

# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
• 1
• 2
• 3

2. 运行第一个MetaGPT程序

我们将创建一个多智能体团队,根据我们的一句话需求编写一个二十一点的游戏软件。

(1)导入已实现的角色

import asyncio
from metagpt.roles import (
    Architect,
    Engineer,
    ProductManager,
    ProjectManager,
)
from metagpt.team import Team

(2)初始化公司团队,配置对应的智能体,设置对应的预算以及提供一个写一个小游戏的需求。

async def startup(idea: str):
    company = Team()
    company.hire(
        [
            ProductManager(),
            Architect(),
            ProjectManager(),
            Engineer(),
        ]
    )
    company.invest(investment=3.0)
    company.start_project(idea=idea)
    await company.run(n_round=5)

(3)运行

asyncio.run(startup(idea="write a cli blackjack game")) # blackjack: 二十一点

运行成功后,可以看到输出结果:

  • 运行过程

  • 运行结束之后在工程目录下会出现一个workspace文件夹,里面就是生成的游戏代码

3. 让我们来看下它写出来的程序怎么样

运行它生成的main.py文件,可以运行成功,然后跟它玩21点游戏,我输了。

功能还是很强大的,整个过程我们只输入了一句话“write a cli blackjack game”。

4. 运行时可能遇到的问题

(1)MetaGPT中用的OpenAI接口好像是<1.0,所以不要安装>1.0的版本,否则无法运行。这就需要Anaconda这样的虚拟环境进行环境隔离,以避免影响到你需要使用openai > 1.0接口的其它项目运行。

(2)运行过程中报错如下,可参考这篇文章解决。

未完待续,请看下篇文章:【AI的未来 - AI Agent系列】【MetaGPT】1. AI Agent如何重构世界

相关文章
|
1月前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
307 69
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
2天前
|
人工智能 自然语言处理 人机交互
Social Media Agent:告别文案焦虑!AI自动生成高转化帖子,输入URL快速生成爆款文案
Social Media Agent 是一款由 LangChain 推出的 AI 社交媒体内容管理工具,支持 Twitter 和 LinkedIn 平台,能快速生成高质量的帖子。
43 17
Social Media Agent:告别文案焦虑!AI自动生成高转化帖子,输入URL快速生成爆款文案
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
Agent Laboratory 是由 AMD 和约翰·霍普金斯大学联合推出的自主科研框架,基于大型语言模型,能够加速科学发现、降低成本并提高研究质量。
248 23
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
|
6天前
|
人工智能 负载均衡 搜索推荐
谷歌发布双思维AI Agent:像人类一样思考,重大技术突破!
谷歌近日推出基于“快慢思维”理论的双思维AI Agent系统,模仿人类大脑的两种思维模式:快速直观的Talker(系统1)和深思熟虑的Reasoner(系统2)。Talker负责日常对话与快速响应,Reasoner则处理复杂推理任务。该系统模块化设计,灵活高效,已在睡眠教练等场景中展现应用潜力,但仍面临工作负载平衡与推理准确性等挑战。论文详情见:https://arxiv.org/abs/2410.08328v1
32 1
|
1月前
|
存储 人工智能 自然语言处理
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
AI Agent以自主性和智能化为核心,适合复杂任务的动态执行;而SaaS工具则注重服务的完整性和易用性,适合标准化业务需求。
125 14
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
|
1月前
|
机器学习/深度学习 人工智能 算法
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
FinRobot 是一个开源的 AI Agent 平台,专注于金融领域的应用,通过大型语言模型(LLMs)构建复杂的金融分析和决策工具,提供市场预测、文档分析和交易策略等多种功能。
238 13
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
|
1月前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
221 22
|
1月前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
197 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
2月前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
617 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
404 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型