Python 网络请求:深入理解Requests库

简介: Python 网络请求:深入理解Requests库

引言

在Python编程世界中,进行网络数据交互是一项至关重要的技能,而Requests库则是这一领域中最受开发者喜爱的工具之一。Requests库以其简洁易用、功能强大而著称,让HTTP客户端操作变得无比轻松,无论是获取网页内容、发送POST请求还是处理API响应,它都能提供强大的支持。本文将带领您深入了解Python Requests库,探讨其核心功能和应用场景。

一、Requests库简介

Requests库由Kenneth Reitz于2012年创建,旨在简化HTTP客户端的使用。它建立在urllib3之上,但提供了更加人性化的接口和丰富的功能特性。只需一行代码,就能发起HTTP GET、POST等各类请求,并能自动处理各种HTTP认证机制、重定向、cookies以及超时等问题。

二、安装与基本使用

在Python环境中,通过pip命令即可快速安装Requests库:

pip install requests

导入库后,发起一个HTTP GET请求只需要短短几行代码:

import requests
 
response = requests.get('https://www.example.com')
print(response.status_code)
print(response.text)

上述代码首先导入requests模块,然后使用get方法向指定URL发送GET请求,并将服务器返回的响应存储在response对象中。response对象包含了诸如状态码、响应体文本、headers等多种信息。

三、requests库的特性与优势

  1. 简洁易用:requests库的API设计非常简洁,易于上手。开发者只需关注业务逻辑,无需处理底层的HTTP细节。
  2. 功能强大:requests库支持多种HTTP方法、自动处理URL编码、会话、cookies等复杂操作,能够满足各种HTTP请求的需求。
  3. 高度可定制:requests库提供了丰富的参数和选项,允许开发者根据实际需求定制请求和响应的处理方式。
  4. 社区支持:requests库拥有庞大的用户群体和活跃的社区,遇到问题时可以轻松找到解决方案和支持。

四、requests库在实际应用中的案例

  1. 网页爬虫:使用requests库发送GET请求,抓取网页内容,并结合BeautifulSoup等库解析HTML,提取所需信息。
  1. API交互:与第三方API进行交互,发送POST、PUT等请求,获取或修改数据。
  2. 数据上报:将本地数据通过requests库发送到远程服务器进行存储或分析。

案例代码:

1.get请求

import requests
response = requests.get('https://www.example.com')
print(response.text)​​​​​​​
 
print(response.status_code)  # 输出状态码  
print(response.headers)  # 输出响应头  
print(response.text)  # 输出响应内容(文本格式)  
print(response.json())  # 输出响应内容(JSON格式,如果响应内容是JSON的话)

2.post请求

import requests
import json
data = {'key': 'value'}
json_data = json.dumps(data)
response = requests.post('https://www.example.com', json=json_data)
print(response.text)

3.超时重试

response = requests.get('https://api.example.com/data', timeout=5)
 
try:
    response = requests.get('https://api.example.com/data', timeout=5)
except requests.exceptions.Timeout:
    print('Timeout! Let\'s try it again...')
    response = requests.get('https://api.example.com/data', timeout=5)

4.headers设置

import requests
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get('https://www.example.com', headers=headers)
print(response.text)

5.session会话

import requests
session = requests.Session()
# 第一个请求
response1 = session.get('https://www.example.com/login')
print(response1.text)
# 第二个请求,会话保持
response2 = session.get('https://www.example.com/dashboard')
print(response2.text)

6.携带cookie

import requests
cookies = {'key': 'value'}
response = requests.get('https://www.example.com', cookies=cookies)
print(response.text)

7.携带代理

import requests
proxies = {
  'http': 'http://10.10.1.10:3128', 
  'https': 'http://10.10.1.10:1080'
  }
response = requests.get('https://www.example.com', proxies=proxies)
print(response.text)

8.携带身份认证

import requests
from requests.auth import HTTPBasicAuth
response = requests.get('https://www.example.com', auth=HTTPBasicAuth('username', 'password'))
print(response.text)

9.文件上传

import requests
files = {'file': open('example.txt', 'rb')}
response = requests.post('https://www.example.com/upload', files=files)
print(response.text)

10.文件下载

import requests
url = 'https://www.example.com/file.jpg'
response = requests.get(url)
with open('file.jpg', 'wb') as f:
    f.write(response.content)

11.解决重定向

import requests
response = requests.get('https://www.example.com', allow_redirects=False)
if response.status_code == 302:
    redirect_url = response.headers['Location']
    print(f'Redirected to: {redirect_url}')

12.证书验证

import requests
response = requests.get('https://www.example.com', verify=False)
print(response.text)

总结

requests库作为Python中处理HTTP请求的神器,以其简洁易用、功能强大、高度可定制和社区支持等特性,在实际应用中发挥着重要作用。无论是网页爬虫、API交互还是数据上报等场景,requests库都能帮助开发者更加高效地处理HTTP请求,提升开发效率。

目录
相关文章
|
3天前
|
运维 监控 数据可视化
Python 网络请求架构——统一 SOCKS5 接入与配置管理
通过统一接入端点与标准化认证,集中管理配置、连接策略及监控,实现跨技术栈的一致性网络出口,提升系统稳定性、可维护性与可观测性。
|
1月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
301 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
1月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
114 0
|
14天前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
101 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
23天前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
218 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
27天前
|
JavaScript Java 大数据
基于python的网络课程在线学习交流系统
本研究聚焦网络课程在线学习交流系统,从社会、技术、教育三方面探讨其发展背景与意义。系统借助Java、Spring Boot、MySQL、Vue等技术实现,融合云计算、大数据与人工智能,推动教育公平与教学模式创新,具有重要理论价值与实践意义。
|
2月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
155 18
|
2月前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
159 0
|
Python
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
687 3
|
开发工具 git Python
安装和使用`libnum`是一个用于数字理论函数的Python库
【6月更文挑战第19天】`libnum`是Python的数字理论函数库。安装可通过`git clone`,进入目录后运行`python setup.py install`,也可用`pip install libnum`。示例:使用`int_to_hex`将十进制数42转换为十六进制字符串'2a'。注意,信息可能已过时,应查最新文档以确保准确性。如遇问题,参考GitHub仓库或寻求社区帮助。
292 1

推荐镜像

更多