PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-4

简介: PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享

PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-3

https://developer.aliyun.com/article/1489342


KNN近邻

classifier = KNeighborsClassifier(n_neighbors =13,metric = 'minkowski' , p=2)
print("Mean accuracy: ",accuracyknn/K)
print("The best AUC: ", bestaucknn)
\[\[7952   30\]
 \[1046   15\]\]

image.png

\[\[7987   30\]
 \[1010   15\]\]

image.png

\[\[7989   23\]
 \[1017   13\]\]

image.png

\[\[7920   22\]
 \[1083   17\]\]

image.png

\[\[7948   21\]
 \[1052   21\]\]

image.png

高斯朴素贝叶斯

kf = KFold(n_splits=K, shuffle=True)
gaussian = GaussianNB()
\[\[7340  690\]
 \[ 682  331\]\]

image.png

\[\[7321  633\]
 \[ 699  389\]\]

image.png

\[\[7291  672\]
 \[ 693  386\]\]

image.png

\[\[7300  659\]
 \[ 714  369\]\]

image.png

\[\[7327  689\]
 \[ 682  344\]\]

image.png

``````
models = pd.DataFrame({
    'Model': \['KNN', 'Logistic Regression', 
              'Naive Bayes', 'Decision Tree','Random Forest'\],
    'Score': \[ accuracyknn/K, accuracylogreg/K, 
              accuracygnb/K, accuracydt/K, accuracyrf/K\],
    'BestAUC': \[bestaucknn,bestauclogreg,bestaucgnb,
                bestaucdt,bestaucrf\]})

image.png

我们看到根据 AUC 值的最佳模型是朴素贝叶斯我们不应该太在意最低的 R2 分数,因为数据非常不平衡(很容易预测 y=0)。在混淆矩阵中,我们看到它预测了漂亮的价值真正值和负值。令我们惊讶的是,决策树的 AUC 约为 50%。

欠采样

我们尝试对变量 y=0 进行欠采样

gTrain, gValid = train\_test\_split

image.png

逻辑回归

predsTrain = logreg.predict(gTrainUrandom)

image.png

predsTrain = logreg.predict(gTrain20Urandom)

image.png

predsTrain = logreg.predict(gTrrandom)

image.png

决策树

``````
print("Train AUC:", metrics.roc\_auc\_score(ygTrds))

image.png

随机森林

print("Train AUC:", metrics.roc\_auc\_score(ygTr, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygVd, preds))

image.png

KNN近邻

print("Train AUC:", metrics.roc\_auc\_score(ygTrm, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygVal10, preds))

image.png

高斯朴素贝叶斯

print("Train AUC:", metrics.roc\_auc\_score(ygTraom, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygid, preds))

image.png

过采样

我们尝试对变量 y=1 进行过采样

feates = datolist()
print(feures)
feaes.remove('y')

image.png

print(gTrainOSM.shape)
(31945, 39)
``````
smt = SMOT
(32345, 39)
``````
smt = SMOT
(32595, 39)
``````
ygTrain10OSM=gTrain10OSM\['y'\]
gTrain10OSM=gTrain10OSM.drop(columns=\['y'\])

逻辑回归

print("Train AUC:", metrics.roc\_auc\_score(ygTrin10SM, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygValid, preds))

image.png

决策树

dt2.fit(,ygTranOS)
predsTrain = dtpreict(TrainOSM)
preds = dt2.predict(gValid)

image.png

随机森林

random_forest.fit(rainOSM, ygTranOS)
predsTrain = random_forest.prect(gTraiOSM)
p

image.png

KNN近邻

classifier.fit(granOSM, yTanOSM)
predsTrain = classifier.predict(gTaiSM)
preds = classifier.predict(Vaid)

image.png

高斯朴素贝叶斯

gaussian.fit(gTriOM, ygrainM)
predsTrain = gaussian.predcti)

image.png

结论

我们看到欠采样和过采样变量 y 对 AUC 没有太大帮助。

相关文章
|
2月前
|
机器学习/深度学习 存储 算法
决策树和随机森林在机器学习中的应用
在机器学习领域,决策树(Decision Tree)和随机森林(Random Forest)是两种非常流行且强大的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。
103 10
|
2月前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
294 3
|
1月前
|
机器学习/深度学习 算法 前端开发
【机器学习】Bagging和随机森林
【机器学习】Bagging和随机森林
|
1月前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
68 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
64 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
1月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
1月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
1月前
|
机器学习/深度学习 数据可视化 算法
机器学习中的回归分析:理论与实践
机器学习中的回归分析:理论与实践
|
1月前
|
机器学习/深度学习 数据采集 算法
【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
43 2
|
2月前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
下一篇
无影云桌面