PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-4

简介: PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享

PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-3

https://developer.aliyun.com/article/1489342


KNN近邻

classifier = KNeighborsClassifier(n_neighbors =13,metric = 'minkowski' , p=2)
print("Mean accuracy: ",accuracyknn/K)
print("The best AUC: ", bestaucknn)
\[\[7952   30\]
 \[1046   15\]\]

image.png

\[\[7987   30\]
 \[1010   15\]\]

image.png

\[\[7989   23\]
 \[1017   13\]\]

image.png

\[\[7920   22\]
 \[1083   17\]\]

image.png

\[\[7948   21\]
 \[1052   21\]\]

image.png

高斯朴素贝叶斯

kf = KFold(n_splits=K, shuffle=True)
gaussian = GaussianNB()
\[\[7340  690\]
 \[ 682  331\]\]

image.png

\[\[7321  633\]
 \[ 699  389\]\]

image.png

\[\[7291  672\]
 \[ 693  386\]\]

image.png

\[\[7300  659\]
 \[ 714  369\]\]

image.png

\[\[7327  689\]
 \[ 682  344\]\]

image.png

``````
models = pd.DataFrame({
    'Model': \['KNN', 'Logistic Regression', 
              'Naive Bayes', 'Decision Tree','Random Forest'\],
    'Score': \[ accuracyknn/K, accuracylogreg/K, 
              accuracygnb/K, accuracydt/K, accuracyrf/K\],
    'BestAUC': \[bestaucknn,bestauclogreg,bestaucgnb,
                bestaucdt,bestaucrf\]})

image.png

我们看到根据 AUC 值的最佳模型是朴素贝叶斯我们不应该太在意最低的 R2 分数,因为数据非常不平衡(很容易预测 y=0)。在混淆矩阵中,我们看到它预测了漂亮的价值真正值和负值。令我们惊讶的是,决策树的 AUC 约为 50%。

欠采样

我们尝试对变量 y=0 进行欠采样

gTrain, gValid = train\_test\_split

image.png

逻辑回归

predsTrain = logreg.predict(gTrainUrandom)

image.png

predsTrain = logreg.predict(gTrain20Urandom)

image.png

predsTrain = logreg.predict(gTrrandom)

image.png

决策树

``````
print("Train AUC:", metrics.roc\_auc\_score(ygTrds))

image.png

随机森林

print("Train AUC:", metrics.roc\_auc\_score(ygTr, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygVd, preds))

image.png

KNN近邻

print("Train AUC:", metrics.roc\_auc\_score(ygTrm, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygVal10, preds))

image.png

高斯朴素贝叶斯

print("Train AUC:", metrics.roc\_auc\_score(ygTraom, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygid, preds))

image.png

过采样

我们尝试对变量 y=1 进行过采样

feates = datolist()
print(feures)
feaes.remove('y')

image.png

print(gTrainOSM.shape)
(31945, 39)
``````
smt = SMOT
(32345, 39)
``````
smt = SMOT
(32595, 39)
``````
ygTrain10OSM=gTrain10OSM\['y'\]
gTrain10OSM=gTrain10OSM.drop(columns=\['y'\])

逻辑回归

print("Train AUC:", metrics.roc\_auc\_score(ygTrin10SM, predsTrain),
      "Valid AUC:", metrics.roc\_auc\_score(ygValid, preds))

image.png

决策树

dt2.fit(,ygTranOS)
predsTrain = dtpreict(TrainOSM)
preds = dt2.predict(gValid)

image.png

随机森林

random_forest.fit(rainOSM, ygTranOS)
predsTrain = random_forest.prect(gTraiOSM)
p

image.png

KNN近邻

classifier.fit(granOSM, yTanOSM)
predsTrain = classifier.predict(gTaiSM)
preds = classifier.predict(Vaid)

image.png

高斯朴素贝叶斯

gaussian.fit(gTriOM, ygrainM)
predsTrain = gaussian.predcti)

image.png

结论

我们看到欠采样和过采样变量 y 对 AUC 没有太大帮助。

相关文章
|
4月前
|
存储 大数据 索引
解锁Python隐藏技能:构建高效后缀树Suffix Tree,处理大数据游刃有余!
通过构建高效的后缀树,Python程序在处理大规模字符串数据时能够游刃有余,显著提升性能和效率。无论是学术研究还是工业应用,Suffix Tree都是不可或缺的强大工具。
73 6
|
4月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
73 2
|
4月前
|
存储 算法 数据挖掘
高效文本处理新纪元:Python后缀树Suffix Tree,让数据分析更智能!
在大数据时代,高效处理和分析文本信息成为关键挑战。后缀树作为一种高性能的数据结构,通过压缩存储字符串的所有后缀,实现了高效的字符串搜索、最长公共前缀查询等功能,成为文本处理的强大工具。本文探讨Python中后缀树的应用,展示其在文本搜索、重复内容检测、最长公共子串查找、文本压缩及智能推荐系统的潜力,引领数据分析迈入新纪元。虽然Python标准库未直接提供后缀树,但通过第三方库或自定义实现,可轻松利用其强大功能。掌握后缀树,即掌握开启文本数据宝藏的钥匙。
62 5
|
3月前
|
机器学习/深度学习 数据采集 算法
一个 python + 数据预处理+随机森林模型 (案列)
本文介绍了一个使用Python进行数据预处理和构建随机森林模型的实际案例。首先,作者通过删除不必要的列和特征编码对数据进行了预处理,然后应用随机森林算法进行模型训练,通过GridSearchCV优化参数,最后展示了模型的评估结果。
60 0
|
4月前
|
存储 开发者 Python
从理论到实践:Python中Trie树与Suffix Tree的完美结合,开启编程新篇章!
在编程领域,高效的数据结构对于解决问题至关重要。本文通过一个案例分析,介绍如何在Python中结合使用Trie树(前缀树)和Suffix Tree(后缀树)。案例聚焦于开发具备高效拼写检查和文本相似度检测功能的文本编辑器。首先,通过构建Trie树快速检查单词是否存在;接着,利用Suffix Tree检测文本相似度。尽管Python标准库未直接提供Suffix Tree,但可通过第三方库或自定义实现。本文展示了高级数据结构在实际应用中的强大功能,并强调了理论与实践相结合的重要性。
52 1
|
4月前
|
存储 算法 Python
逆袭之路:掌握Python字典树Trie与后缀树,成为技术圈的耀眼新星!
在编程的征途上,每个人都渴望成为那个能够独当一面、解决复杂问题的技术高手。而掌握高级数据结构,如字典树(Trie)与后缀树(Suffix Tree),无疑是你逆袭路上的重要一步。这些数据结构不仅能够提升你的编码技能,还能让你在解决特定问题时游刃有余,从而在技术圈中脱颖而出,成为那颗耀眼的新星。
42 1
|
4月前
|
存储 算法 搜索推荐
Python进阶必备:字典树Trie与后缀树Suffix Array,效率提升的神器!
在Python编程中,掌握高效的数据结构对于提升程序性能至关重要。本文将深入探讨两种强大的字符串处理数据结构——字典树(Trie)与后缀数组(Suffix Array)。字典树,又称前缀树,适用于自动补全和拼写检查等功能。例如,在文本编辑器中实现自动补全时,字典树能够即时提供单词补全选项。后缀数组则用于存储字符串的所有后缀并按字典序排序,结合最长公共前缀(LCP)数组,可以高效解决许多字符串问题,如查找最长重复子串等。通过实际案例,我们将展示这两种数据结构的强大功能,帮助你在Python编程中更进一步。
77 2
|
7月前
自适应IT互联网营销企业网站pbootcms模板
一款蓝色自适应IT互联网营销企业网站pbootcms模板,该模板采用响应式设计,可自适应手机端,适合一切网络技术公司、互联网IT行业,源码下载,为您提供了便捷哦。
68 2
|
SQL 数据采集 运维
《实时数仓助力互联网实时决策和精准营销》|学习笔记
快速学习《实时数仓助力互联网实时决策和精准营销》
257 0