PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-1

简介: PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享

原文链接:http://tecdat.cn/?p=26219 

银行数据集

我们的数据集描述

该数据查看文末了解数据获取方式与银行机构的直接营销活动相关,营销活动基于电话。通常,需要与同一客户的多个联系人联系,以便访问产品(银行定期存款)是否会(“是”)或不会(“否”)订阅。

y - 客户是否订阅了定期存款?(二进制:'是','否')

我们的目标是选择最好的回归模型来让客户订阅或不订阅定期存款。我们将使用如下算法:

  • 线性回归
  • 随机森林回归
  • KNN近邻
  • 决策树
  • 高斯朴素贝叶斯
  • 支持向量机

选择最佳模型的决定将基于:

  • 准确性
  • 过采样

数据准备

在本节中,我们加载数据。我们的数据有 45211 个变量。

输入变量:

银行客户数据

1 - 年龄(数字)

2 - 工作:工作类型(分类:'行政'、'蓝领'、'企业家'、'女佣'、'管理'、'退休'、'自雇'、'服务'、'学生'、'技术员'、'失业'、'未知')

3 - 婚姻:婚姻状况(分类:'离婚'、'已婚'、'单身'、'不详';注:'离婚'指离婚或丧偶)。

4 - 教育(分类:'基础4年'、'基础6年'、'基础9年'、'高中'、'文盲'、'专业课程'、'大学学位'、'未知')

5 - 违约:是否有违约的信贷?(分类: '没有', '有', '未知')

6-住房:是否有住房贷款?(分类: '否', '是', '未知')

7 - 贷款:有个人贷款吗?

8 - contact: 联系通信类型(分类:'手机', '电话')。

9 - 月:最后一次联系的年份月份(分类:'一月', '二月', '三月', ..., '十一月', '十二月')

10 - day\_of\_week:最后一次联系的星期(分类:'mon', 'tue', 'wed', 'thu', 'fri')

11 - 持续时间:最后一次联系的持续时间,以秒为单位(数字)。

12 - 活动:在这个活动期间为这个客户进行的接触次数(数字,包括最后一次接触)。

13 - pdays: 在上次活动中最后一次与客户联系后的天数(数字,999表示之前没有与客户联系)。

14 - 以前:在这次活动之前,为这个客户进行的接触次数(数字)。

15 - 结果:上次营销活动的结果(分类:"失败"、"不存在"、"成功")。

社会和经济背景属性

16 - emp.var.rate:就业变化率--季度指标(数值)。

17 - cons.price.idx:消费者价格指数--月度指标(数值)。

18 - cons.conf.idx:消费者信心指数--月度指标(数字)。

19 - euribor3m:银行3个月利率--每日指标(数值)

20 - nr.employed: 雇员人数 - 季度指标(数字)

输出变量(所需目标):

  • y -  客户是否认购了定期存款?(二进制: '是', '否')
data.head(5)

image.png

我们的下一步是查看变量的形式以及是否存在缺失值的问题。

df1 = data.dtypes
df1

image.png

df2 = data.isnull().sum() 
df2

image.png

我们的下一步是计算所有变量的值。

data\['y'\].value_counts()

image.png

data\['job'\].value_counts()

image.png

data\['marital'\].value_counts()

image.png

data\['education'\].value_counts()

image.png

data\['housing'\].value_counts()

image.png

data\['loan'\].value_counts()

image.png

data\['contact'\].value_counts()

image.png

data\['month'\].value_counts()

image.png

data\['poutcome'\].value_counts()

image.png

描述性统计

数值总结

data.head(5)

image.png

改变因变量 y 的值。代替 no - 0 和代替 yes - 1。

data\['y'\] = data\['y'\].map({'no': 0, 'yes': 1})
data.columns

image.png

对于我们的每个变量,我们绘制一个箱线图来查看是否有任何可见的异常值。

plt.figure(figsize=\[10,25\])
ax = plt.subplot(611)
sns.boxplot(data\['age'\],orient="v")

image.png

image.png

我们可以看到许多可见的异常值,尤其是在 balance 、 campaign 、 pdays 的情况下。在 pdays ,我们可以看到很多变量都在分位数范围之外。这个变量是一个特例,它被解码为 -1,这就是我们的图看起来像这样的原因。在表示变量之前的箱线图的情况下,它表示在此活动之前执行的联系数量,在这种情况下,我们还可以注意到许多超出分位数范围的值。

直方图

我们的下一步是查看连续变量的分布和直方图

我们可以看到没有一个变量具有正态分布。

plt.figure(figsize=\[10,20\])
plt.subplot(611)
g = sns.distplot(data\["age"\], color="r")

image.png

image.png

image.png

我们的下一步是查看因变量 y 与每个变量或连续变量之间的关系。

g = sns.FacetGrid(data, col='y',size=4)
g.map

image.png

image.png

image.png

从这些变量中我们可以得到的最有趣的观察是,大多数说不的人年龄在20-40岁之间,在月底的第20天,大多数人也拒绝了这个提议。


PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-2

https://developer.aliyun.com/article/1489341

相关文章
|
1月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
105 10
|
10天前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
1月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
传感器 物联网 开发者
使用Python读取串行设备的温度数据
本文介绍了如何使用Python通过串行接口(如UART、RS-232或RS-485)读取温度传感器的数据。详细步骤包括硬件连接、安装`pyserial`库、配置串行端口、发送请求及解析响应等。适合嵌入式系统和物联网应用开发者参考。
64 3
|
2月前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
93 0
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
85 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
50 2
|
2月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
55 2
|
2月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集