PolarDB 开源版 通过pgpointcloud 实现高效孪生数据存储和管理 - 支撑工厂、农业等现实世界数字化|数字孪生, 元宇宙相关业务的虚拟现实结合

简介: 背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理;PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力。本文将介绍PolarDB 开源版 通过 pgpointcloud 实现高效孪生数据存储...

1. 背景

PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理;PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力。

本文将介绍PolarDB 开源版 通过 pgpointcloud 实现高效孪生数据存储和管理 - 支撑工厂,农业等现实世界数字化|数字孪生,,元宇宙相关业务的虚拟现实结合。测试环境为macOS+docker,PolarDB部署请参考如何用 PolarDB 证明巴菲特的投资理念 - 包括PolarDB简单部署点云部署参考使用 PolarDB 开源版 部署 pgpointcloud 支撑激光点云数据的高速存储、压缩、高效精确提取

2. pgpointcloud 的特性

pgpointcloud的原理是将很多个点存储到一个值(点集)里面, 点集可以用来表达轨迹、扫描影像, 业务操作通常包含:

  • 判断轨迹是否相交(指包住两个轨迹的边界(bound box)是否相交),实际上使用PostGIS的trajectories可能更适合。

  • 判断轨迹是否落到某个给定区域(指轨迹的边界(bound box)是否和指定几何对象是否相交)。

  • 指定区域将内部的轨迹抠出(将落在指定几何对象内部的点从点集中抠出)。

  • 合并轨迹

  • 压缩轨迹

  • 3D建模和数据存储

  • 3D影像的抠出

注意这里说的“轨迹”不带时间, 只是为了辅助理解,所以称之为轨迹,实际上pgpointcloud不适合轨迹业务。轨迹建议使用postgis. 或者阿里云ganos。

pgpointcloud存储点集的优势:

  • 支持压缩,节省成本

  • 片存储,存取效率高

  • 支持内置点云操作算法,同时可扩展算法,无需提取数据到本地进行计算,大幅度提升计算效率。

  • 支持GIS,方便和地理信息结合,更好的满足虚拟现实|数字孪生业务需求。

  • 支持索引,过滤效率高。

3. 例子

SELECT PC_MakePoint(1, ARRAY[-127, 45, 124.0, 4.0]);  
  
010100000064CEFFFF94110000703000000400  

Insert some test values into the points table:

INSERT INTO points (pt)  
SELECT PC_MakePoint(1, ARRAY[x,y,z,intensity])  
FROM (  
  SELECT  
  -127+a/100.0 AS x,  
    45+a/100.0 AS y,  
         1.0*a AS z,  
          a/10 AS intensity  
  FROM generate_series(1,100) AS a  
) AS values;  
SELECT PC_AsText('010100000064CEFFFF94110000703000000400'::pcpoint);  
  
{"pcid":1,"pt":[-127,45,124,4]}  
  1. 点集

INSERT INTO patches (pa)  
SELECT PC_Patch(pt) FROM points GROUP BY id/10;  
SELECT PC_AsText(PC_MakePatch(1, ARRAY[-126.99,45.01,1,0, -126.98,45.02,2,0, -126.97,45.03,3,0]));  
  
{"pcid":1,"pts":[  
 [-126.99,45.01,1,0],[-126.98,45.02,2,0],[-126.97,45.03,3,0]  
]}  
SELECT PC_AsText(pa) FROM patches LIMIT 1;  
  
{"pcid":1,"pts":[  
 [-126.99,45.01,1,0],[-126.98,45.02,2,0],[-126.97,45.03,3,0],  
 [-126.96,45.04,4,0],[-126.95,45.05,5,0],[-126.94,45.06,6,0],  
 [-126.93,45.07,7,0],[-126.92,45.08,8,0],[-126.91,45.09,9,0]  
]}  
  1. 判断轨迹是否相交(指包住两个轨迹的边界(bound box)是否相交),实际上使用PostGIS的trajectories可能更适合。

-- Patch should intersect itself  
SELECT PC_Intersects(  
         '01010000000000000001000000C8CEFFFFF8110000102700000A00'::pcpatch,  
         '01010000000000000001000000C8CEFFFFF8110000102700000A00'::pcpatch);  
  
t  
  1. 判断轨迹是否落到某个给定区域(指轨迹的边界(bound box)是否和指定几何对象是否相交)。

SELECT PC_Intersects('SRID=4326;POINT(-126.451 45.552)'::geometry, pa)  
FROM patches WHERE id = 7;  
  
t  
  1. 指定区域将内部的轨迹抠出(将落在指定几何对象内部的点从点集中抠出)。

SELECT PC_AsText(PC_Explode(PC_Intersection(  
      pa,  
      'SRID=4326;POLYGON((-126.451 45.552, -126.42 47.55, -126.40 45.552, -126.451 45.552))'::geometry  
)))  
FROM patches WHERE id = 7;  
  
             pc_astext  
--------------------------------------  
 {"pcid":1,"pt":[-126.44,45.56,56,5]}  
 {"pcid":1,"pt":[-126.43,45.57,57,5]}  
 {"pcid":1,"pt":[-126.42,45.58,58,5]}  
 {"pcid":1,"pt":[-126.41,45.59,59,5]}  
  1. 合并轨迹

聚合函数

-- Compare npoints(sum(patches)) to sum(npoints(patches))  
SELECT PC_NumPoints(PC_Union(pa)) FROM patches;  
SELECT Sum(PC_NumPoints(pa)) FROM patches;  
  
100  

可变函数

create or replace function pcunion (VARIADIC pc pcpatch[]) returns pcpatch as $$  
  select PC_Union(pa) from unnest(pc) as pa;  
$$ language sql strict;  
  
select pcunion(pc1,pc2,...);  
  1. 压缩点集

PC_Compress(p pcpatch,global_compression_scheme text,compression_config text) returns pcpatch  

Allowed global compression schemes are:

auto: determined by pcid

laz: no compression config supported

dimensional: configuration is a comma-separated list of per-dimension compressions from this list

auto: determined automatically from values stats

zlib: deflate compression

sigbits: significant bits removal

rle: run-length encoding

  1. 3D影像的抠出

1 PC_FilterGreaterThan  
PC_FilterGreaterThan(p pcpatch, dimname text, float8 value) returns pcpatch:  
  
Returns a patch with only points whose values are greater than the supplied value for the requested dimension.  
  
SELECT PC_AsText(PC_FilterGreaterThan(pa, 'y', 45.57))  
FROM patches WHERE id = 7;  
  
 {"pcid":1,"pts":[[-126.42,45.58,58,5],[-126.41,45.59,59,5]]}  
  
2 PC_FilterLessThan  
PC_FilterLessThan(p pcpatch, dimname text, float8 value) returns pcpatch:  
Returns a patch with only points whose values are less than the supplied value for the requested dimension.  
  
3 PC_FilterBetween  
PC_FilterBetween(p pcpatch, dimname text, float8 value1, float8 value2) returns pcpatch:  
Returns a patch with only points whose values are between (excluding) the supplied values for the requested dimension.  
  
4 PC_FilterEquals  
PC_FilterEquals(p pcpatch, dimname text, float8 value) returns pcpatch:  
Returns a patch with only points whose values are the same as the supplied values for the requested dimension.  
  1. 返回包住点集的几何“bound box”或“bound box的对角线”

通常用于在几何图像上创建geo索引:

SELECT ST_AsText(PC_EnvelopeGeometry(pa)) FROM patches LIMIT 1;  
POLYGON((-126.99 45.01,-126.99 45.09,-126.91 45.09,-126.91 45.01,-126.99 45.01))  
  
CREATE INDEX ON patches USING GIST(PC_EnvelopeGeometry(patch));  
SELECT ST_AsText(PC_BoundingDiagonalGeometry(pa)) FROM patches;  
                  st_astext  
------------------------------------------------  
LINESTRING Z (-126.99 45.01 1,-126.91 45.09 9)  
LINESTRING Z (-126 46 100,-126 46 100)  
LINESTRING Z (-126.2 45.8 80,-126.11 45.89 89)  
LINESTRING Z (-126.4 45.6 60,-126.31 45.69 69)  
LINESTRING Z (-126.3 45.7 70,-126.21 45.79 79)  
LINESTRING Z (-126.8 45.2 20,-126.71 45.29 29)  
LINESTRING Z (-126.5 45.5 50,-126.41 45.59 59)  
LINESTRING Z (-126.6 45.4 40,-126.51 45.49 49)  
LINESTRING Z (-126.9 45.1 10,-126.81 45.19 19)  
LINESTRING Z (-126.7 45.3 30,-126.61 45.39 39)  
LINESTRING Z (-126.1 45.9 90,-126.01 45.99 99)  
  
CREATE INDEX ON patches USING GIST(PC_BoundingDiagonalGeometry(patch) gist_geometry_ops_nd);  

4. pgpointcloud 函数接口解读

PC_MakePoint(pcid integer, vals float8[]) returns pcpoint:

  • 构建点, pcid为schema, 相同schema可以表达为某一类点

PC_AsText(p pcpoint) returns text:

  • 将二进制点转换成text表达

PC_PCId(p pcpoint) returns integer (from 1.1.0):

  • 获取点的schema id

PC_Get(pt pcpoint) returns float8[]:

  • 获取点的所有维度值

PC_Get(pt pcpoint, dimname text) returns numeric:

  • 获取指定维度值: x,y,z,Intensity

PC_MemSize(pt pcpoint) returns int4:

  • 点占据内存大小

  1. 点集

PC_Patch(pts pcpoint[]) returns pcpatch:

  • 将多个点聚合为点集

PC_MakePatch(pcid integer, vals float8[]) returns pcpatch:

  • 构造点集

PC_NumPoints(p pcpatch) returns integer:

  • 返回点集中有多少点

PC_PCId(p pcpatch) returns integer:

  • 返回点集的schema id

PC_AsText(p pcpatch) returns text:

  • 将点集二进制格式转换为文本格式

PC_Summary(p pcpatch) returns text (from 1.1.0):

  • 返回点集的统计信息: 点个数, srid, 各个维度的avg,min,max统计等

PC_Uncompress(p pcpatch) returns pcpatch:

  • 解压点集

PC_Union(p pcpatch[]) returns pcpatch:

  • 将多个点集聚合为一个点集

PC_Intersects(p1 pcpatch, p2 pcpatch) returns boolean:

  • 判断两个点集的bound box是否相交

PC_Explode(p pcpatch) returns SetOf[pcpoint]:

  • 将点集展开为点(返回多条记录)

PC_PatchAvg(p pcpatch, dimname text) returns numeric:

  • 返回点集指定维度的平均值

PC_PatchMax(p pcpatch, dimname text) returns numeric:

  • 返回点集指定维度的最大值

PC_PatchMin(p pcpatch, dimname text) returns numeric:

  • 返回点集指定维度的最小值

PC_PatchMin(p pcpatch) returns pcpoint:

  • 返回点集所有维度的最小值

PC_PatchAvg(p pcpatch) returns pcpoint:

  • 返回点集所有维度的平均值

PC_PatchMax(p pcpatch) returns pcpoint:

  • 返回点集所有维度的最大值

PC_FilterGreaterThan(p pcpatch, dimname text, float8 value) returns pcpatch:

  • 过滤在某个‘指定维度’上大于‘指定’的点, 构成一个新的点集返回

PC_FilterLessThan(p pcpatch, dimname text, float8 value) returns pcpatch:

  • 过滤在某个‘指定维度’上小于‘指定值’的点, 构成一个新的点集返回

PC_FilterBetween(p pcpatch, dimname text, float8 value1, float8 value2) returns pcpatch:

  • 过滤在某个‘指定维度’上落在某‘指定值’范围内的点, 构成一个新的点集返回

PC_FilterEquals(p pcpatch, dimname text, float8 value) returns pcpatch:

  • 过滤在某个‘指定维度’上等于‘指定值’的点, 构成一个新的点集返回

PC_Compress(p pcpatch,global_compression_scheme text,compression_config text) returns pcpatch:

  • 压缩点集

PC_PointN(p pcpatch, n int4) returns pcpoint:

  • 返回点集内的第N个点

PC_IsSorted(p pcpatch, dimnames text[], strict boolean default true) returns boolean:

  • 判断点集在某些维度上是否有序

PC_Sort(p pcpatch, dimnames text[]) returns pcpatch:

  • 对点集按指定维度排序. 有点像电子管电视机的扫描顺序的概念

PC_Range(p pcpatch, start int4, n int4) returns pcpatch:

  • 返回点集中指定区间的点

PC_SetPCId(p pcpatch, pcid int4, def float8 default 0.0) returns pcpatch:

  • 设置点集的schema id

PC_Transform(p pcpatch, pcid int4, def float8 default 0.0) returns pcpatch:

  • 转换点集schema id

PC_MemSize(p pcpatch) returns int4:

  • 返回点集内存占用

  1. GIS互动

PC_Intersects(p pcpatch, g geometry) returns boolean: PC_Intersects(g geometry, p pcpatch) returns boolean:

  • 判断点集的bound box是否与几何对象交叉

PC_Intersection(pcpatch, geometry) returns pcpatch:

  • 提取点集内落在几何对象内的点构成新点集并返回

Geometry(pcpoint) returns geometry: pcpoint::geometry returns geometry:

  • 将点转换为几何对象

PC_EnvelopeGeometry(pcpatch) returns geometry:

  • 提取点集的bound box, 返回由bound box四个点组成的polygon

PC_BoundingDiagonalGeometry(pcpatch) returns geometry:

  • 提取点集的bound box, 返回由bound box左下和右上点组成的对角线段

5. 详细参考

链接

作者介绍
目录