R语言弹性网络Elastic Net正则化惩罚回归模型交叉验证可视化

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: R语言弹性网络Elastic Net正则化惩罚回归模型交叉验证可视化

原文链接:http://tecdat.cn/?p=26158

弹性网络正则化同时应用 L1 范数和 L2 范数正则化来惩罚回归模型中的系数。为了在 R 中应用弹性网络正则化。在 LASSO回归中,我们为 alpha 参数设置一个 '1' 值,并且在 岭回归中,我们将 '0' 值设置为其 alpha 参数。弹性网络在 0 到 1 的范围内搜索最佳 alpha 参数。在这篇文章中,我们将学习如何在 R 中应用弹性网络正则化。

首先,我们将为本教程创建测试数据集。

df <- data.frame(a,b,c,z)
 
x <- as.matrix(df)\[,-4\]
for (i in 1:length(alpha)) 
{
   bst$mse <- c(bet$mse, min(cg$cm))
}
 
inx <- which(bst$mse==min(bst$mse))
betlha <- bs$a\[inex\]
be_mse <- bst$mse\[inex\]

image.png

接下来,我们再次使用最佳 alpha 进行交叉验证以获得 lambda(收缩水平)。

elacv <- cv(x, v)
bestbda <- elacv$lambda.min

image.png

现在,我们可以使用函数拟合具有最佳 alpha 和 lambda 值的模型。

coef(elamod)

image.png

最后,我们可以使用模型预测测试数据并计算 RMSE、R 平方和 MSE 值。

predict(elasod, x)
cat(" RMSE:", rmse, "\\n", "R-squared:", R2, "\\n", "MSE:", mse)

image.png

预测结果可视化:

image.png

预测结果:

image.png


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
68 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
2月前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
61 0
|
3月前
|
机器学习/深度学习 Python
弹性网(Elastic Net)正则化
弹性网(Elastic Net)正则化
|
1月前
|
网络协议 Unix Linux
精选2款C#/.NET开源且功能强大的网络通信框架
精选2款C#/.NET开源且功能强大的网络通信框架
|
1月前
|
网络协议 网络安全 Apache
一个整合性、功能丰富的.NET网络通信框架
一个整合性、功能丰富的.NET网络通信框架
|
2月前
|
存储 数据可视化 开发工具
2款.NET开源且免费的Git可视化管理工具
2款.NET开源且免费的Git可视化管理工具
|
2月前
|
机器学习/深度学习 Python
【10月更文挑战第1天】弹性网(Elastic Net)正则化
【10月更文挑战第1天】弹性网(Elastic Net)正则化
|
2月前
|
机器学习/深度学习 数据可视化 Linux
Seaborn可视化学习笔记(一):可视化神经网络权重分布情况
这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。
70 0
|
3月前
|
网络架构
.NET 网络唤醒
【9月更文挑战第5天】在网络管理中,.NET 可以实现 Wake-on-LAN,即通过发送特定数据包(魔术包)唤醒睡眠或关机状态的计算机。首先需引入命名空间(System.Net, System.Net.Sockets),然后编写 WakeUpComputer 方法,构造并发送含有目标计算机 MAC 地址的魔术包,最后调用此方法即可。使用前,请确认目标计算机及网络设备支持此功能。
50 12
|
4月前
|
数据可视化 算法 C++
脑研究、脑网络分析、可视化的工具箱有哪些?
本文列举并简要介绍了用于脑研究、脑网络分析和可视化的多种工具箱,如Brain Connectivity Toolbox、bctpy、人类连接组项目等,为神经科学研究者提供了丰富的分析和可视化大脑网络的工具选择。
255 2
脑研究、脑网络分析、可视化的工具箱有哪些?

热门文章

最新文章