【MySQL面试题pro版-6】

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 【MySQL面试题pro版-6】


MySQL是一个关系型数据库管理系统,由瑞典 MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的RDBMS (Relational Database Management System,关系数据库管理系统)应用软件之一。

数据库的三范式

数据库的三范式是设计关系型数据库时常用的一种规范,它有助于确保数据的一致性和减少数据冗余。三范式分别是:

  1. 第一范式(1NF):属性不可再分
  • 每个字段都是原子性的,即字段不可再分。
  • 例如,一个地址字段应该拆分为街道、城市、省份和邮编等独立的字段。
  1. 第二范式(2NF):完全依赖于主键
  • 满足第一范式的基础上,非主键字段必须完全依赖于主键,而不是部分依赖。
  • 例如,如果有一个订单详情表,其中包含订单ID、产品ID、数量和价格等字段,那么这个表应该满足第二范式,因为所有非主键字段都完全依赖于主键(订单ID和产品ID)。
  1. 第三范式(3NF):消除传递依赖
  • 满足第二范式的基础上,非主键字段之间不能有传递依赖关系。
  • 例如,如果有一个员工表,其中包含员工ID、姓名、部门ID和部门经理ID等字段,那么这个表应该满足第三范式,因为部门经理ID不应该直接依赖于员工ID,而是应该依赖于部门ID。

遵循三范式的数据库设计可以减少数据冗余,提高数据的一致性和可维护性。然而,在实际应用中,为了提高查询性能,有时需要对三范式进行适当的权衡和调整。

Mysql优化建议

  • 对查询进行优化,应尽量避免全表扫描,首先应考虑在 WHERE 及 ORDER BY 涉及的列上建立索引。
  • 应尽量避免在 WHERE 子句中对字段进行 NULL 值判断,创建表时 NULL 是默认值,但大多数时候应该使用NOT NULL,或者使用一个特殊的值,如 0,-1 作为默认值。
  • 应尽量避免在 WHERE 子句中使用 != 或 <> 操作符。MySQL 只有对以下操作符才使用索引:<,<=,=,>,=,BETWEEN,IN,以及某些时候的 LIKE。、
  • 应尽量避免在 WHERE 子句中使用 OR 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,可以使用UNION 合并查询:select id from t where num=10 union all select id from t where num=20。
  • IN 和 NOT IN 也要慎用,否则会导致全表扫描。对于连续的数值,能用 BETWEEN 就不要用 IN:select idfrom t where num between 1 and 3。IN肯定会走索引,但是当IN的取值范围较大时会导致索引失效,走全表扫描。
  • 下面的查询也将导致全表扫描:select id from t where name like‘%abc%’ 或者select id from t where namelike‘%abc’若要提高效率,可以考虑全文检索。而select id from t where name like‘abc%’才用到索引。like只有
    在右面才会走索引
  • 如果在 WHERE 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
    select id from t where num=@num
    – 可以改为强制查询使用索引:
    select id from t with(index(索引名)) where num=@num
  • 应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。
  • 很多时候用 EXISTS 代替 IN 是一个好的选择:select num from a where num in(select num from b)。用下面
    的语句替换:select num from a where exists(select 1 from b where num=a.num)。
  • 索引固然可以提高相应的 SELECT 的效率,但同时也降低了 INSERT 及 UPDATE 的效。因为 INSERT 或 UPDATE
    时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过 6 个,
    若太多则应考虑一些不常使用到的列上建的索引是否有必要。

Mysql聚集索引

在MySQL中,聚集索引(Clustered Index)是指索引的一种类型,它决定了数据行的物理存储顺序。每个InnoDB表都有一个主键,而这个主键的索引就是聚集索引。聚集索引的叶节点包含了完整的数据行,而非叶节点则包含指向子节点的指针。

以下是一些关于MySQL聚集索引的重要特点:

  1. 数据行存储顺序:数据行按照聚集索引的顺序存储在磁盘上,这意味着聚集索引决定了数据的物理存储方式。
  2. 主键作为聚集索引:如果表定义了主键,那么主键就是该表的聚集索引。如果没有显式定义主键,InnoDB会选择一个唯一非空索引作为聚集索引,如果也没有这样的索引,InnoDB会隐式地生成一个名为GEN_CLUST_INDEX的自动递增列作为聚集索引。
  3. 叶节点包含数据行:在聚集索引中,叶节点包含了完整的数据行信息,而不仅仅是索引列。这意味着查询时,如果只需要访问索引列,就不需要再单独去查找数据行。
  4. 一张表只有一个聚集索引:由于聚集索引决定了数据的物理存储方式,因此每张表只能有一个聚集索引。这也是为什么InnoDB表的主键只能有一个的原因。
  5. 辅助索引(二级索引):除了聚集索引之外,其他的所有索引都称为辅助索引或二级索引。辅助索引的叶节点包含的是指向相应数据行的指针,而不是数据行本身。当查询使用辅助索引时,InnoDB会先查找辅助索引,然后通过指针找到聚集索引中的完整数据行。
  6. 插入优化:由于聚集索引决定了数据的物理存储顺序,新插入的数据行通常会被放置在已有数据行的末尾。如果新插入的数据行需要放在中间位置,可能会导致大量的数据移动,影响性能。

了解聚集索引的特点对于数据库设计和查询优化非常重要。例如,合理地选择主键可以使得常用的查询更加高效,因为聚集索引能够直接影响到数据行的访问速度。

Mysql的非聚集索引

在MySQL中,非聚集索引(Non-Clustered Index)也被称为二级索引或辅助索引。与聚集索引不同,非聚集索引并不决定数据行的物理存储顺序,而是包含指向数据行的指针。每条索引记录都包含了一个指向实际数据行的地址,以及索引列的值。

以下是一些关于MySQL非聚集索引的重要特点:

  1. 独立于数据行存储:非聚集索引的叶节点包含了指向数据行的指针,而不是数据行本身。这意味着非聚集索引的结构和数据行的物理存储是独立的。
  2. 可以有多个:与聚集索引不同,一张表可以有多个非聚集索引。这是因为非聚集索引不决定数据行的物理存储方式,所以可以为不同的列创建多个索引以提高查询效率。
  3. 访问路径:当查询使用非聚集索引时,InnoDB会先查找非聚集索引,然后通过指针找到聚集索引中的完整数据行。如果查询只需要访问索引列,就不需要再访问数据行。
  4. 覆盖索引:如果查询只需要访问非聚集索引中的列,而不需要访问数据行中的其他列,这种情况被称为覆盖索引(Covering Index)。覆盖索引可以提高查询效率,因为不需要访问数据行。
  5. 插入优化:由于非聚集索引不直接影响数据行的物理存储顺序,新插入的数据行对非聚集索引的影响通常比对聚集索引小。这意味着在某些情况下,插入操作可能会更快。
  6. 维护成本:每个非聚集索引都需要额外的存储空间,并且在插入、更新和删除操作时需要维护。因此,过多的非聚集索引可能会增加写操作的开销。

了解非聚集索引的特点对于数据库设计和查询优化非常重要。合理地选择和使用非聚集索引可以提高查询性能,但同时也要注意不要过度使用,以免增加写操作的负担和维护成本。

MySql的回表查询是什么?

除了聚集索引以外,其他建立索引的方式都是非聚集索引,就是普通索引,二级索引。二级索引要进行回表。二级索 引存储的并不是本身的数据,而是聚集索引中的主键值。第一次查询,找到主键值,再通过主键值找到真正的数据。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
存储 SQL 关系型数据库
MySQL进阶突击系列(03) MySQL架构原理solo九魂17环连问 | 给大厂面试官的一封信
本文介绍了MySQL架构原理、存储引擎和索引的相关知识点,涵盖查询和更新SQL的执行过程、MySQL各组件的作用、存储引擎的类型及特性、索引的建立和使用原则,以及二叉树、平衡二叉树和B树的区别。通过这些内容,帮助读者深入了解MySQL的工作机制,提高数据库管理和优化能力。
|
2月前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
3月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
15天前
|
存储 SQL 关系型数据库
MySQL 面试题
MySQL 的一些基础面试题
|
2月前
|
SQL 缓存 关系型数据库
美团面试:Mysql 有几级缓存? 每一级缓存,具体是什么?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴因未能系统梳理MySQL缓存机制而在美团面试中失利。为此,尼恩对MySQL的缓存机制进行了系统化梳理,包括一级缓存(InnoDB缓存)和二级缓存(查询缓存)。同时,他还将这些知识点整理进《尼恩Java面试宝典PDF》V175版本,帮助大家提升技术水平,顺利通过面试。更多技术资料请关注公号【技术自由圈】。
美团面试:Mysql 有几级缓存? 每一级缓存,具体是什么?
|
2月前
|
SQL 算法 关系型数据库
面试:什么是死锁,如何避免或解决死锁;MySQL中的死锁现象,MySQL死锁如何解决
面试:什么是死锁,死锁产生的四个必要条件,如何避免或解决死锁;数据库锁,锁分类,控制事务;MySQL中的死锁现象,MySQL死锁如何解决
|
2月前
|
SQL 关系型数据库 MySQL
美团面试:Mysql如何选择最优 执行计划,为什么?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴面试美团时遇到了关于MySQL执行计划的面试题:“MySQL如何选择最优执行计划,为什么?”由于缺乏系统化的准备,小伙伴未能给出满意的答案,面试失败。为此,尼恩为大家系统化地梳理了MySQL执行计划的相关知识,帮助大家提升技术水平,展示“技术肌肉”,让面试官“爱到不能自已”。相关内容已收录进《尼恩Java面试宝典PDF》V175版本,供大家参考学习。
|
3月前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
3月前
|
SQL 关系型数据库 MySQL
美团面试:mysql 索引失效?怎么解决? (重点知识,建议收藏,读10遍+)
本文详细解析了MySQL索引失效的多种场景及解决方法,包括破坏最左匹配原则、索引覆盖原则、前缀匹配原则、`ORDER BY`排序不当、`OR`关键字使用不当、索引列上有计算或函数、使用`NOT IN`和`NOT EXISTS`不当、列的比对等。通过实例演示和`EXPLAIN`命令分析,帮助读者深入理解索引失效的原因,并提供相应的优化建议。文章还推荐了《尼恩Java面试宝典》等资源,助力面试者提升技术水平,顺利通过面试。
|
3月前
|
存储 关系型数据库 MySQL
面试官:MySQL一次到底插入多少条数据合适啊?
本文探讨了数据库插入操作的基础知识、批量插入的优势与挑战,以及如何确定合适的插入数据量。通过面试对话的形式,详细解析了单条插入与批量插入的区别,磁盘I/O、内存使用、事务大小和锁策略等关键因素。最后,结合MyBatis框架,提供了实际应用中的批量插入策略和优化建议。希望读者不仅能掌握技术细节,还能理解背后的原理,从而更好地优化数据库性能。