熟悉 SpringCloud 的小伙伴应该对 Zookeeper 不陌生,它可以用了做注册中心,但是Zookeeper不仅仅是微服务的组件,还在大数据框架内扮演重要角色。
1.简介
Zookeeper 是一个开源的分布式协调服务,目前由 Apache 进行维护。Zookeeper 可以用于实现分布式系统中常见的发布/订阅、负载均衡、命令服务、分布式协调/通知、集群管理、Master 选举、分布式锁和分布式队列等功能。它具有以下特性:
- 顺序一致性:从一个客户端发起的事务请求,最终都会严格按照其发起顺序被应用到 Zookeeper中;
- 原子性:所有事务请求的处理结果在整个集群中所有机器上都是一致的;不存在部分机器应用了该事务,而另一部分没有应用的情况;
- 单一视图:所有客户端看到的服务端数据模型都是一致的;
- 可靠性:一旦服务端成功应用了一个事务,则其引起的改变会一直保留,直到被另外一个事务所更改;
- 实时性:一旦一个事务被成功应用后,Zookeeper 可以保证客户端立即可以读取到这个事务变更后的最新状态的数据。
2.设计目标
Zookeeper 致力于为那些高吞吐的大型分布式系统提供一个高性能、高可用、且具有严格顺序访问控制能力的分布式协调服务。它具有以下四个目标:2.1 目标一:简单的数据模型
Zookeeper 通过树形结构来存储数据,它由一系列被称为 ZNode 的数据节点组成,类似于常见的文件系统。不过和常见的文件系统不同,Zookeeper 将数据全量存储在内存中,以此来实现高吞吐,减少访问延迟。2.2 目标二:构建集群
可以由一组 Zookeeper 服务构成 Zookeeper 集群,集群中每台机器都会单独在内存中维护自身的状态,并且每台机器之间都保持着通讯,只要集群中有半数机器能够正常工作,那么整个集群就可以正常提供服务。2.3 目标三:顺序访问
对于来自客户端的每个更新请求,Zookeeper 都会分配一个全局唯一的递增 ID,这个 ID 反映了所有事务请求的先后顺序。
2.4 目标四:高性能高可用
ZooKeeper 将数据存全量储在内存中以保持高性能,并通过服务集群来实现高可用,由于 Zookeeper的所有更新和删除都是基于事务的,所以其在读多写少的应用场景中有着很高的性能表现。
3.核心概念
3.1 集群角色
Zookeeper 集群中的机器分为以下三种角色:
- Leader :为客户端提供读写服务,并维护集群状态,它是由集群选举所产生的;
- Follower :为客户端提供读写服务,并定期向 Leader 汇报自己的节点状态。同时也参与写操作“过半写成功”的策略和 Leader 的选举;
- Observer :为客户端提供读写服务,并定期向 Leader 汇报自己的节点状态,但不参与写操作“过半写成功”的策略和 Leader 的选举,因此 Observer 可以在不影响写性能的情况下提升集群的读性能。
3.2 会话
Zookeeper 客户端通过 TCP 长连接连接到服务集群,会话 (Session) 从第一次连接开始就已经建立,之后通过心跳检测机制来保持有效的会话状态。通过这个连接,客户端可以发送请求并接收响应,同时也可以接收到 Watch 事件的通知。
关于会话中另外一个核心的概念是 sessionTimeOut(会话超时时间),当由于网络故障或者客户端主动断开等原因,导致连接断开,此时只要在会话超时时间之内重新建立连接,则之前创建的会话依然有效。
3.3 数据节点
Zookeeper 数据模型是由一系列基本数据单元 Znode (数据节点) 组成的节点树,其中根节点为 / 。每个节点上都会保存自己的数据和节点信息。Zookeeper 中节点可以分为两大类:
- 持久节点 :节点一旦创建,除非被主动删除,否则一直存在;
- 临时节点 :一旦创建该节点的客户端会话失效,则所有该客户端创建的临时节点都会被删除。
临时节点和持久节点都可以添加一个特殊的属性: SEQUENTIAL ,代表该节点是否具有递增属性。如果指定该属性,那么在这个节点创建时,Zookeeper 会自动在其节点名称后面追加一个由父节点维护的递增数字。3.4 节点信息
每个 ZNode 节点在存储数据的同时,都会维护一个叫做 Stat 的数据结构,里面存储了关于该节点的全部状态信息。如下:
| 状态属性 | 说明 |
| -------------- | ------------------------------------------------------------ |
| czxid | 数据节点创建时的事务 ID |
| ctime | 数据节点创建时的时间 |
| mzxid | 数据节点最后一次更新时的事务 ID |
| mtime | 数据节点最后一次更新时的时间 |
| pzxid | 数据节点的子节点最后一次被修改时的事务 ID |
| cversion | 子节点的更改次数 |
| version | 节点数据的更改次数 |
| aversion | 节点的 ACL 的更改次数 |
| ephemeralOwner | 如果节点是临时节点,则表示创建该节点的会话的 SessionID;如果节点是持久节点,则该属性值为 0 |
| dataLength | 数据内容的长度 |
| numChildren | 数据节点当前的子节点个数 |3.5 Watcher
Zookeeper 中一个常用的功能是 Watcher(事件监听器),它允许用户在指定节点上针对感兴趣的事件注册监听,当事件发生时,监听器会被触发,并将事件信息推送到客户端。该机制是 Zookeeper 实现分布式协调服务的重要特性。3.6 ACL
Zookeeper 采用 ACL(Access Control Lists) 策略来进行权限控制,类似于 UNIX 文件系统的权限控制。它定义了如下五种权限: - CREATE:允许创建子节点;
- READ:允许从节点获取数据并列出其子节点;
- WRITE:允许为节点设置数据;
- DELETE:允许删除子节点;
- ADMIN:允许为节点设置权限。
4.ZAB协议
4.1 ZAB协议与数据一致性
ZAB 协议是 Zookeeper 专门设计的一种支持崩溃恢复的原子广播协议。通过该协议,Zookeepe 基于主从模式的系统架构来保持集群中各个副本之间数据的一致性。具体如下:
Zookeeper 使用一个单一的主进程来接收并处理客户端的所有事务请求,并采用原子广播协议将数据状态的变更以事务 Proposal n.提意,建议;求婚
的形式广播到所有的副本进程上去。如下图:
具体流程如下:
所有的事务请求必须由唯一的 Leader 服务来处理,Leader 服务将事务请求转换为事务 Proposal,并将该 Proposal 分发给集群中所有的 Follower 服务。如果有半数的 Follower 服务进行了正确的反馈,那么 Leader 就会再次向所有的 Follower 发出 Commit 消息,要求将前一个 Proposal 进行提交。
4.2 ZAB协议的内容
ZAB 协议包括两种基本的模式,分别是崩溃恢复和消息广播:
崩溃恢复
当整个服务框架在启动过程中,或者当 Leader 服务器出现异常时,ZAB 协议就会进入恢复模式,通过过半选举机制产生新的 Leader,之后其他机器将从新的 Leader 上同步状态,当有过半机器完成状态同步后,就退出恢复模式,进入消息广播模式。
消息广播
ZAB 协议的消息广播过程使用的是原子广播协议。在整个消息的广播过程中,Leader 服务器会每个事物请求生成对应的 Proposal,并为其分配一个全局唯一的递增的事务 ID(ZXID),之后再对其进行广播。具体过程如下:
Leader 服务会为每一个 Follower 服务器分配一个单独的队列,然后将事务 Proposal 依次放入队列中,并根据 FIFO(先进先出) 的策略进行消息发送。Follower 服务在接收到 Proposal 后,会将其以事务日志的形式写入本地磁盘中,并在写入成功后反馈给 Leader 一个 Ack 响应。当 Leader 接收到超过半数 Follower 的 Ack 响应后,就会广播一个 Commit 消息给所有的 Follower 以通知其进行事务提交,之后 Leader 自身也会完成对事务的提交。而每一个 Follower 则在接收到 Commit 消息后,完成事务的提交。
5.Zookeeper的典型应用场景
5.1数据的发布/订阅
数据的发布/订阅系统,通常也用作配置中心。在分布式系统中,你可能有成千上万个服务节点,如果想要对所有服务的某项配置进行更改,由于数据节点过多,你不可逐台进行修改,而应该在设计时采用统一的配置中心。之后发布者只需要将新的配置发送到配置中心,所有服务节点即可自动下载并进行更新,从而实现配置的集中管理和动态更新。
Zookeeper 通过 Watcher 机制可以实现数据的发布和订阅。分布式系统的所有的服务节点可以对某个ZNode 注册监听,之后只需要将新的配置写入该 ZNode,所有服务节点都会收到该事件。
5.2 命名服务
在分布式系统中,通常需要一个全局唯一的名字,如生成全局唯一的订单号等,Zookeeper 可以通过顺序节点的特性来生成全局唯一 ID,从而可以对分布式系统提供命名服务。
5.3 Master选举
分布式系统一个重要的模式就是主从模式 (Master/Salves),Zookeeper 可以用于该模式下的 Matser选举。可以让所有服务节点去竞争性地创建同一个 ZNode,由于 Zookeeper 不能有路径相同的ZNode,必然只有一个服务节点能够创建成功,这样该服务节点就可以成为 Master 节点。
5.4 分布式锁
可以通过 Zookeeper 的临时节点和 Watcher 机制来实现分布式锁,这里以排它锁为例进行说明:
分布式系统的所有服务节点可以竞争性地去创建同一个临时 ZNode,由于 Zookeeper 不能有路径相同的 ZNode,必然只有一个服务节点能够创建成功,此时可以认为该节点获得了锁。其他没有获得锁的服务节点通过在该 ZNode 上注册监听,从而当锁释放时再去竞争获得锁。锁的释放情况有以下两种:
- 当正常执行完业务逻辑后,客户端主动将临时 ZNode 删除,此时锁被释放;
- 当获得锁的客户端发生宕机时,临时 ZNode 会被自动删除,此时认为锁已经释放。
当锁被释放后,其他服务节点则再次去竞争性地进行创建,但每次都只有一个服务节点能够获取到锁,这就是排他锁。
5.5 集群管理
Zookeeper 还能解决大多数分布式系统中的问题:
- 如可以通过创建临时节点来建立心跳检测机制。如果分布式系统的某个服务节点宕机了,则其持有的会话会超时,此时该临时节点会被删除,相应的监听事件就会被触发。
- 分布式系统的每个服务节点还可以将自己的节点状态写入临时节点,从而完成状态报告或节点工作进度汇报。
- 通过数据的订阅和发布功能,Zookeeper 还能对分布式系统进行模块的解耦和任务的调度。
- 通过监听机制,还能对分布式系统的服务节点进行动态上下线,从而实现服务的动态扩容。