【Chat GPT】用 ChatGPT 运行 Python

简介: 【Chat GPT】用 ChatGPT 运行 Python

前言


ChatGPT 是一个基于 GPT-2 模型的人工智能聊天机器人,它可以进行智能对话,同时还支持 Python 编程语言的运行,可以通过 API 接口进行调用。本文将介绍如何使用 ChatGPT 运行 Python 代码,并提供一个实际代码案例。


ChatGPT 简介


ChatGPT 是一个可以与人进行智能对话的人工智能聊天机器人,它基于 GPT-2 模型开发。GPT-2 是 OpenAI 公司开发的一种基于深度学习的自然语言处理模型,它能够生成高质量的文章、诗歌、故事等,同时还能够进行智能对话。ChatGPT 利用 GPT-2 模型进行自然语言理解和生成,可以与用户进行流畅的对话。


ChatGPT 接口


ChatGPT 提供了 API 接口,可以通过 HTTP 请求向 ChatGPT 发送消息并接收机器人的回复。发送的消息必须使用 JSON 格式,包含以下字段:

 
{
    "message": "你好"
}


接收到的机器人的回复也是一个 JSON 字符串,包含以下字段:

{
    "message": "你好呀!"
}


其中,message 字段表示回复的文本内容。


ChatGPT Python SDK


为了方便使用 ChatGPT,我们还提供了一个 Python SDK。可以通过 pip 安装:

pip install chatgpt


安装完成后,可以通过以下代码进行测试:

from chatgpt import ChatGPT
 
chatbot = ChatGPT()
response = chatbot.get_response("你好")
print(response)

这段代码会向 ChatGPT 发送一个消息:“你好”,并输出机器人的回复。


ChatGPT Python 示例代码


下面我们来介绍一个实际的 ChatGPT Python 示例代码。这个代码会向 ChatGPT 发送用户输入的问题,然后调用一个外部的 API 获取答案,最后将答案发送给用户。

首先,我们需要导入必要的依赖:
import json
import requests
from chatgpt import ChatGPT
然后,我们需要定义 ChatGPT 的 API 地址和 API Key:
CHATGPT_API_URL = "http://api.chatgpt.com/message"
CHATGPT_API_KEY = "YOUR_API_KEY_HERE"
接着,我们需要定义一个函数,用来向外部的 API 发送问题并获取答案:
def get_answer(question):
    API_URL = "https://api.openai.com/v1/engine/davinci-codex/search"
    API_KEY = "YOUR_API_KEY_HERE"
    prompt = f"What is the answer to the question: {question}?"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_KEY}",
    }
    data = {
        "model": "davinci-codex-2022-06-23",
        "prompt": prompt,
        "max_tokens": 30,
        "temperature": 0,
        "n": 1,
        "stop": [".", "?", "!"],
    }
    response = requests.post(API_URL, headers=headers, json=data).json()
    answer = response["data"][0]["answer"]["text"].strip()
    return answer

这个函数使用了 OpenAI 的 GPT-3 模型,接收一个问题作为输入,调用 API 获取答案,并返回答案。

最后,我们需要定义一个主函数,用来接收用户的输入,向 ChatGPT 发送问题,并获取答案:
def main():
    chatbot = ChatGPT(api_url=CHATGPT_API_URL, api_key=CHATGPT_API_KEY)
    while True:
        question = input("> ")
        response = chatbot.get_response(question)
        answer = get_answer(response)
        print(answer)

这个主函数使用一个循环,等待用户输入问题。每次接收到问题后,它会向 ChatGPT 发送问题,并获取机器人的回复。然后,它会调用 get_answer() 函数获取答案,并将答案输出到控制台。

最后,我们需要在程序末尾调用主函数:
if __name__ == "__main__":
    main()

这个程序的完整代码如下:

import json
import requests
from chatgpt import ChatGPT
 
CHATGPT_API_URL = "http://api.chatgpt.com/message"
CHATGPT_API_KEY = "YOUR_API_KEY_HERE"
 
def get_answer(question):
    API_URL = "https://api.openai.com/v1/engine/davinci-codex/search"
    API_KEY = "YOUR_API_KEY_HERE"
    prompt = f"What is the answer to the question: {question}?"
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_KEY}",
    }
    data = {
        "model": "davinci-codex-2022-06-23",
        "prompt": prompt,
        "max_tokens": 30,
        "temperature": 0,
        "n": 1,
        "stop": [".", "?", "!"],
    }
    response = requests.post(API_URL, headers=headers, json=data).json()
    answer = response["data"][0]["answer"]["text"].strip()
    return answer
 
def main():
    chatbot = ChatGPT(api_url=CHATGPT_API_URL, api_key=CHATGPT_API_KEY)
    while True:
        question = input("> ")
        response = chatbot.get_response(question)
        answer = get_answer(response)
        print(answer)
 
if __name__ == "__main__":
    main()


总结


这个程序使用 ChatGPT 进行智能对话,并使用 OpenAI 的 GPT-3 模型获取答案。你可以将 YOUR_API_KEY_HERE 替换成你自己的 API Key,运行这个程序,进行测试。

相关文章
|
3月前
|
存储 数据库连接 API
Python环境变量在开发和运行Python应用程序时起着重要的作用
Python环境变量在开发和运行Python应用程序时起着重要的作用
138 15
|
1月前
|
人工智能 语音技术 iOS开发
MiniCPM-o 2.6:面壁智能开源多模态大模型,仅8B参数量就能媲美GPT-4o,支持实时交互,在ipad等终端设备上运行
MiniCPM-o 2.6 是面壁智能开源的多模态大模型,支持视觉、语音和多模态直播,性能媲美GPT-4o,能够在端侧设备上高效运行。
326 10
MiniCPM-o 2.6:面壁智能开源多模态大模型,仅8B参数量就能媲美GPT-4o,支持实时交互,在ipad等终端设备上运行
|
2月前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
174 5
|
2月前
|
Shell 开发工具 Python
如何在vim里直接运行python程序
如何在vim里直接运行python程序
|
3月前
|
开发者 Python
使用Python实现自动化邮件通知:当长时程序运行结束时
本文介绍了如何使用Python实现自动化邮件通知功能,当长时间运行的程序完成后自动发送邮件通知。主要内容包括:项目背景、设置SMTP服务、编写邮件发送函数、连接SMTP服务器、发送邮件及异常处理等步骤。通过这些步骤,可以有效提高工作效率,避免长时间等待程序结果。
113 9
|
4月前
|
Linux 区块链 Python
Python实用记录(十三):python脚本打包exe文件并运行
这篇文章介绍了如何使用PyInstaller将Python脚本打包成可执行文件(exe),并提供了详细的步骤和注意事项。
177 1
Python实用记录(十三):python脚本打包exe文件并运行
|
4月前
|
机器学习/深度学习 人工智能 并行计算
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat 是一款革命性的平台,专为简化和加速类ChatGPT模型的训练而设计。通过一键式脚本,用户可以轻松完成从预训练模型到生成自定义ChatGPT模型的全过程。该系统复刻了InstructGPT的RLHF训练方法,并集成了一系列优化技术,如DeepSpeed Hybrid Engine,大幅提升了训练效率和经济性。使用DeepSpeed Chat,即使是拥有数千亿参数的大模型,也能在短时间内完成训练,且成本显著降低。无论是单GPU还是多GPU集群环境,DeepSpeed Chat都能提供卓越的性能和易用性,让RLHF训练变得更加普及。
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
|
3月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
67 3
|
4月前
|
自然语言处理 API Python
一文告诉你如何用 Python 操作 ChatGPT
一文告诉你如何用 Python 操作 ChatGPT
127 2
|
5月前
|
Windows Python
python获取windows机子上运行的程序名称
python获取windows机子上运行的程序名称