通过阿里云 Milvus 与 PAI 搭建高效的检索增强生成(RAG)系统

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 阿里云Milvus现已无缝集成于阿里云PAI平台,一站式赋能用户构建高性能的检索增强生成(RAG)系统。您可以利用Milvus作为向量数据的实时存储与检索核心,高效结合PAI和LangChain技术栈,实现从理论到实践的快速转化,搭建起功能强大的RAG解决方案。

阿里云Milvus现已无缝集成于阿里云PAI平台,一站式赋能用户构建高性能的检索增强生成(RAG)系统。您可以利用Milvus作为向量数据的实时存储与检索核心,高效结合PAI和LangChain技术栈,实现从理论到实践的快速转化,搭建起功能强大的RAG解决方案。


免费试用


背景信息

随着 AI 技术的飞速发展,生成式人工智能在文本生成、图像生成等领域展现出了令人瞩目的成就。然而,在广泛应用大语言模型(LLM)的过程中,一些固有局限性逐渐显现:

  • 领域知识局限:大语言模型通常基于大规模通用数据集训练而成,这意味着它们在处理专业垂直领域的具体应用时可能缺乏针对性和深度。
  • 信息更新滞后:由于模型训练所依赖的数据集具有静态特性,大模型无法实时获取和学习最新的信息与知识进展。
  • 模型误导性输出:受制于数据偏差、模型内在缺陷等因素,大语言模型有时会出现看似合理实则错误的输出,即所谓的“大模型幻觉”。


为克服这些挑战,并进一步强化大模型的功能性和准确性,检索增强生成技术 RAG(Retrieval-Augmented Generation)应运而生。这一技术通过整合外部知识库,能够显著减少大模型虚构的问题,并提升其获取及应用最新知识的能力,从而实现更个性化和精准化的 LLM 定制。


RAG 技术架构的核心为检索和生成。其中,检索部分采用了高效的向量检索引擎和向量数据库技术,例如基于开源库 Faiss、Annoy 以及 HNSW 算法优化构建的 Milvus 系统,极大地提升了对大规模数据进行快速检索和精确分析的能力。这样的设计使得RAG能够在必要时即时调用相关领域或最新信息,有效弥补了传统大语言模型的不足之处。


前提条件


使用限制

Milvus 实例和 PAI(EAS)须在相同地域下。


操作流程

步骤一:通过 PAI 部署 RAG 系统

  1. 进入模型在线服务页面。
  1. 登录PAI控制台
  2. 在左侧导航栏单击工作空间列表,在工作空间列表页面中单击待操作的工作空间名称,进入对应工作空间内。
  3. 在工作空间页面的左侧导航栏选择模型部署>模型在线服务(EAS),进入模型在线服务(EAS)页面。
  1. PAI-EAS模型在线服务页面,单击部署服务
  2. 部署服务页面,选择大模型RAG对话系统
  3. 部署大模型RAG对话系统页面,配置以下关键参数,其余参数可使用默认配置,更多参数详情请参见大模型RAG对话系统

参数

描述

基本信息

服务名称

您可以自定义。

模型来源

使用默认的开源公共模型

资源配置

模型类别

通常选择通义千问7B。例如,Qwen1.5-7b。

资源配置选择

按需选择GPU资源配置。例如,ml.gu7i.c16m30.1-gu30。

向量检索库设置

版本类型

选择Milvus

数据库文件夹名称

您在Milvus中自定义的Collection名称。

访问地址

Milvus实例的内网地址。您可以在Milvus实例的实例详情页面查看。

代理端口

Milvus实例的Proxy Port。您可以在Milvus实例的实例详情页面查看。

账号

配置为root。

密码

配置为创建Milvus实例时,您自定义的root用户的密码。

Collection删除

是否删除已存在的Collection。取值如下:

  • True:删除同名的Collection,再创建新的Collection。如果不存在同名Collection,则直接进行创建。
  • False:保留现有的同名Collection,新加入的数据将追加到该Collection中。

专有网络配置

VPC

创建Milvus实例选择时的VPC、交换机和安全组。您可以在Milvus实例的实例详情页面查看。

交换机

安全组名称


  1. 单击部署
    服务状态变为运行中时,表示服务部署成功。


  1. 模型在线服务(EAS)页面,单击查看Web应用,进入WebUI页面。


步骤二:在 WebUI 中使用 Milvus 向量检索

  1. 测试连通性。
    如下图所示,在 RAG 服务 WebUI 界面的 Settings 选项卡中,系统已自动识别并应用了部署服务时配置的向量检索库设置,并且该设置不支持修改。您可以单击 Connect Milvus,来验证 Milvus 连接是否正常。


    连接正常后 Connection Info 显示 Connect Milvus success。


  1. 上传数据。
    如下图所示,您可以在 RAG 服务 WebUI 界面的 Upload 选项卡中,上传 TXT 或 HTML 类型的用户知识库文档。
    本文以PAI.txt例,当完成上传后,会显示Upload 1 files [ PAI.txt, ] Success!

    您还可以在Milvus实例的实例详情页,单击右上角的Attu Manager,然后输入Milvus实例的用户名和密码,可以查看写入的数据和向量等信息。Attu的相关操作,请参见Attu工具管理


  1. 向量检索。
    如下图所示,您可以在RAG服务WebUI界面的Chat选项卡中,选择RAG (Retrieval + LLM),然后进行向量检索等一系列实验。



快速跳转

  1. 向量检索 Milvus 版官网:https://www.aliyun.com/product/milvus
  2. 产品控制台:https://milvus.console.aliyun.com/#/overview
  3. 产品文档:https://help.aliyun.com/zh/milvus/
  4. 标准版申请:https://survey.aliyun.com/apps/zhiliao/JqRjGNFoS



向量检索 Milvus 版用户交流钉钉群

1712734996586.png

相关文章
|
2天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
15天前
|
开发者 Python
阿里云PAI DSW快速部署服务
在使用阿里云DSW实例进行开发的时候,可能需要快速部署服务测试应用效果。DSW实例目前已经支持通过自定义服务访问配置功能,对外提供服务访问能力,您在应用开发过程中无需分享整个DSW实例,即可将服务分享给协作开发者进行测试和验证。
64 23
|
2月前
|
机器学习/深度学习 人工智能 算法
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
阿里云人工智能平台 PAI 顺利通过中国信通院组织的 ITU-T AICP-GA国际标准和《智算工程平台能力要求》国内标准一致性测评,成为国内首家通过该标准的企业。阿里云人工智能平台 PAI 参与完成了智算安全、AI 能力中心、数据工程、模型开发训练、模型推理部署等全部八个能力域,共计220余个用例的测试,并100%通过测试要求,获得了 ITU 国际标准和国内可信云标准评估通过双证书。
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
【NeurIPS'24】阿里云 PAI 团队论文被收录为 Spotlight,并完成主题演讲分享
12月10日,NeurIPS 2024在温哥华开幕,阿里云PAI团队论文《PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations》入选Spotlight,PAI团队还进行了“可信AI的技术解读与最佳实践”主题演讲,展示AI工程化平台产品能力。
|
29天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
64 4
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
51 1
|
2月前
|
机器学习/深度学习 自然语言处理 Linux
Linux 中的机器学习:Whisper——自动语音识别系统
本文介绍了先进的自动语音识别系统 Whisper 在 Linux 环境中的应用。Whisper 基于深度学习和神经网络技术,支持多语言识别,具有高准确性和实时处理能力。文章详细讲解了在 Linux 中安装、配置和使用 Whisper 的步骤,以及其在语音助手、语音识别软件等领域的应用场景。
67 5
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
116 4
|
15天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
39 2