网络社区检测(社群发现)分析女性参加社交活动和社区节点着色可视化

简介: 网络社区检测(社群发现)分析女性参加社交活动和社区节点着色可视化

在网络上进行社区检测时,有时我们不仅拥有实体之间的联系。这些实体代表了我们可能也想在网络可视化中代表的现实事物。

plot(g)

我使用数据集,代表了观察到的 18 位女性参加 14 场社交活动的情况。



点击标题查阅往期内容


R语言复杂网络分析:聚类(社区检测)和可视化


左右滑动查看更多


01

02

03

04




不考虑这个图是二向图,让我们尝试将图划分为社区。有自然的分界线吗?让我们根据节点所属的社区为节点着色:

community(g)
col <- membership + 1
plot

正如我们所看到的,该算法找到了2个社区,乍一看,这种划分似乎是合理的。无论如何,还有一种自然的划分是算法无法找到的:事件/女性的二元关系。每个节点都有这样的属性:"是女性 "或 "是事件"。让我们用不同的方式来描述这个图的特征。我们有14个事件。对于这些,我们改变它们的形状。

shape <- "squa"
shape <- "cice"
plot(g)

如何从给定的网络中提取社区?

在网络中寻找社区是复杂系统范式下的一项常见任务。有几种方法可以使用非常不同的包对图进行社区分区。

网络社区检测算法

walktrap.community

该算法通过执行随机游走找到密集连接的子图。这个想法是随机游走将倾向于留在社区内,而不是跳到其他社区。

边缘.中间.社区

这个算法就是Girvan-Newman算法。它是一种分割算法,在每一步中,具有最高间性的边被从图中移除。对于每一次划分,你都可以计算出图的模块化程度。最后,在这个过程给你带来最高模块化值的地方选择切割树状图。

Newman快速算法(fast greedy)")

该算法是纽曼算法。在这种情况下,算法是凝聚的。在每一步,两组合并。合并是通过优化模块化决定的。这是一种快速算法,但有一个贪婪算法的缺点。因此,虽然我发现它有用且准确,但它可能不会产生最佳的整体社区划分。

自旋玻璃社群发现

该算法使用自旋玻璃模型和模拟退火来查找网络内的社区。

# 首先我们加载ipgrah软件包
 
# 让我们生成两个网络并将其合并为一个图。
graph.union
 
# 让我们删除多线和循环
simplify
 
# 让我们用Grivan-Newman算法看看这里是否有社区。
# Grivan-Newman算法
# 首先,我们计算边缘间性、合并等。
edge.betweenness.community
 
# 现在我们有了合并/拆分,我们需要计算模块化。
# 对于每个合并,我们将使用一个函数,对于每个边被删除,将创建第二个图,检查其成员资格并使用该成员资格来计算模块化程度
membership
# -在原图g上计算模块化 
  modularit
 
# 我们现在可以绘制所有模块化的图
plot
 
# 现在,让我们根据节点的成员资格为其着色
removed.edges
color=membership

 

# 让我们为图选择一个布局
layout
 
# 绘制
plot
 
# 使用 fastgreedy.community 算法


plot



相关文章
|
2月前
|
JSON 监控 API
在线网络PING接口检测服务器连通状态免费API教程
接口盒子提供免费PING检测API,可测试域名或IP的连通性与响应速度,支持指定地域节点,适用于服务器运维和网络监控。
|
2月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
64 2
|
4月前
|
监控 安全 Linux
Arista CloudVision 2025.1 - 多云和数据中心网络自动化、监控和分析
Arista CloudVision 2025.1 - 多云和数据中心网络自动化、监控和分析
132 2
Arista CloudVision 2025.1 - 多云和数据中心网络自动化、监控和分析
|
5月前
|
运维 监控 安全
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
在数字化时代,网络质量分析与流量回溯对保障业务运行至关重要。网络拥塞、丢包等问题可能导致业务中断、安全隐患及成本上升。传统工具常缺乏细粒度数据,难以溯源问题。流量回溯分析可还原现场,助力精准排障。AnaTraf网络流量分析仪作为专业工具,能高效定位问题,提升团队响应力,降低运营风险。
如何高效进行网络质量劣化分析与流量回溯分析?-AnaTraf
|
4月前
|
传感器 算法 数据安全/隐私保护
基于GA遗传优化的三维空间WSN网络最优节点部署算法matlab仿真
本程序基于遗传算法(GA)优化三维空间无线传感网络(WSN)的节点部署,通过MATLAB2022A实现仿真。算法旨在以最少的节点实现最大覆盖度,综合考虑空间覆盖、连通性、能耗管理及成本控制等关键问题。核心思想包括染色体编码节点位置、适应度函数评估性能,并采用网格填充法近似计算覆盖率。该方法可显著提升WSN在三维空间中的部署效率与经济性,为实际应用提供有力支持。
|
3月前
|
机器学习/深度学习 算法 5G
基于DNN深度神经网络的OFDM+QPSK信号检测与误码率matlab仿真
本内容展示了基于深度神经网络(DNN)的OFDM-QPSK信号检测算法在Matlab2022a中的仿真效果。通过构建包含多层全连接层和ReLU激活函数的DNN模型,结合信号预处理与特征提取,实现了复杂通信环境下的高效信号检测。仿真结果对比了传统LS、MMSE方法与DNN方法在不同信噪比(SNR)条件下的误码率(BER)和符号错误率(SER),验证了DNN方法的优越性能。核心程序涵盖了QPSK调制、导频插入、OFDM发射、信道传输及DNN预测等关键步骤,为现代通信系统提供了可靠的技术支持。
47 0
|
5月前
|
大数据
“你朋友圈的真面目,大数据都知道!”——用社交网络分析看透人情世故
“你朋友圈的真面目,大数据都知道!”——用社交网络分析看透人情世故
157 16
|
5月前
|
SQL 数据采集 人工智能
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
“服务器老被黑?那是你没上AI哨兵!”——聊聊基于AI的网络攻击检测那些事儿
212 12
|
5月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
116 8
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
209 17

热门文章

最新文章