Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据

简介: Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据

此示例中,神经网络用于使用2011年4月至2013年2月期间的数据预测公民办公室的电力消耗。

每日数据是通过总计每天提供的15分钟间隔的消耗量来创建的。

LSTM简介

LSTM(或长短期记忆人工神经网络)允许分析具有长期依赖性的有序数据。当涉及到这项任务时,传统的神经网络体现出不足,在这方面,LSTM将用于预测这种情况下的电力消耗模式。

与ARIMA等模型相比,LSTM的一个特殊优势是数据不一定需要是稳定的(常数均值,方差和自相关),以便LSTM对其进行分析。

自相关图,Dickey-Fuller测试和对数变换

为了确定我们的模型中是否存在平稳性

  • 生成自相关和自相关图
  • 进行Dickey-Fuller测试
  • 对时间序列进行对数变换,并再次运行上述两个过程,以确定平稳性的变化(如果有的话)

首先,这是时间序列图:

据观察,波动性(或消费从一天到下一天的变化)非常高。在这方面,对数变换可以用于尝试稍微平滑该数据。在此之前,生成ACF和PACF图,并进行Dickey-Fuller测试。

自相关图

偏自相关图

自相关和自相关图都表现出显着的波动性,这意味着时间序列中的几个区间存在相关性。

运行Dickey-Fuller测试时,会产生以下结果:

当p值高于0.05时,不能拒绝非平稳性的零假设。

 

STD1
954.7248
4043.4302
0.23611754

变异系数(或平均值除以标准差)为0.236,表明该系列具有显着的波动性。

现在,数据被转换为对数格式。

虽然时间序列仍然不稳定,但当以对数格式表示时,偏差的大小略有下降:

此外,变异系数已显着下降至0.0319,这意味着与平均值相关的趋势的可变性显着低于先前。

STD2 = np.std(数据集)
mean2 = np.mean(数据集)
cv2 = std2 / mean2 #变异系数
std2
0.26462445
mean2
8.272395
cv2
0.031988855

同样,在对数数据上生成ACF和PACF图,并再次进行Dickey-Fuller测试。

自相关图

偏自相关图

Dickey-Fuller测试

... print('\ t%s:%。3f'%(key,value))
1%:-3.440
5%: -  2.866
10%: -  2.569

Dickey-Fuller检验的p值降至0.0576。虽然这在技术上没有拒绝零假设所需的5%显着性阈值,但对数时间序列已显示基于CV度量的较低波动率,因此该时间序列用于LSTM的预测目的。

LSTM的时间序列分析

现在,LSTM模型用于预测目的。

数据处理

首先,导入相关库并执行数据处理

LSTM生成和预测

模型训练超过100期,并生成预测。

#生成LSTM网络
model = Sequential()
model.add(LSTM(4,input_shape =(1,previous)))
 model.fit(X\_train,Y\_train,epochs = 100,batch_size = 1,verbose = 2)
#生成预测
trainpred = model.predict(X_train)
#将标准化后的数据转换为原始数据
trainpred = scaler.inverse_transform(trainpred)
#计算 RMSE
trainScore = math.sqrt(mean\_squared\_error(Y_train \[0\],trainpred \[:,0\]))
 
#训练预测
trainpredPlot = np.empty_like(dataset)
 
#测试预测
#绘制所有预测
inversetransform,= plt.plot(scaler.inverse_transform(dataset))

准确性

该模型显示训练数据集的均方根误差为0.24,测试数据集的均方根误差为0.23。平均千瓦消耗量(以对数格式表示)为8.27,这意味着0.23的误差小于平均消耗量的3%。

以下是预测消费与实际消费量的关系图:

有趣的是,当在原始数据上生成预测(未转换为对数格式)时,会产生以下训练和测试误差:

在每天平均消耗4043千瓦的情况下,测试的均方误差占总日均消耗量的近20%,并且与对数数据产生的误差相比非常高。

让我们来看看这增加预测到1050天。

10天

50天

我们可以看到测试误差在10天和50天期间显着降低,并且考虑到LSTM模型在预测时考虑了更多的历史数据,消耗的波动性得到了更好的预测。

鉴于数据是对数格式,现在可以通过获得数据的指数来获得预测的真实值。

例如,testpred变量用(1,-1)重新调整:

testpred.reshape(1,-1)
 array(\[\[7.7722197,8.277015,8.458941,8.455311,8.447589,8.445035,
 ......
8.425287,8.404881,8.457063,8.423954,7.98714,7.9003944,
8.240862,8.41654,8.423854,8.437414,8.397851,7.9047146\]\],
dtype = float32)

结论

对于这个例子,LSTM被证明在预测电力消耗波动方面非常准确。此外,以对数格式表示时间序列可以提高LSTM的预测准确度。

相关文章
|
3月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
2292 1
|
3月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
548 0
|
3月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
375 0
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
330 2
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
327 2
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
197 1
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南

热门文章

最新文章

推荐镜像

更多