PYTHON在线零售数据关联规则挖掘APRIORI算法数据可视化

简介: PYTHON在线零售数据关联规则挖掘APRIORI算法数据可视化

原文链接:http://tecdat.cn/?p=23955

关联规则学习 在机器学习中用于发现变量之间的有趣关系。Apriori算法是一种流行的关联规则挖掘和频繁项集提取算法,在关联规则学习中有应用。它旨在对包含交易的数据库进行操作,例如商店客户的购买(购物篮分析)。除了购物篮分析之外,该算法还可以应用于其他问题。例如,在网络用户导航领域,我们可以搜索诸如访问过网页A和网页B的客户也访问过网页C的规则。

在这篇文章中,我将分享如何使用Python 获取关联规则和绘制图表,为数据挖掘中的关联规则创建数据可视化 。首先我们需要得到关联规则。

从数组数据中获取关联规则

要获取关联规则,您可以运行以下代码

import pandas as pd
oary = ott(daset).trafrm(dtset)
df = pd(oh_ry, column=oht.cns)
print (df)

frequent = apror(df, mn_upprt=0.6, useclaes=True)


print (frequent )

数据挖掘中的置信度和支持度

为了选择有趣的规则,我们可以使用最知名的约束,即置信度和支持度的最小阈值

支持度是指项目集在数据集中出现的频率。

置信度表示规则被发现为真的频率。

suprt=rules(\['suport'\])


cofidece=rules(\['confience'\])

关联规则——散点图

建立散点图的python代码。由于这里有几个点有相同的值,我添加了小的随机值来显示所有的点。

for i in range (len(supprt)):


  suport\[i\] = suport\[i\] + 0.00 * (ranom.radint(,10)- 5)

  confidence\[i\] = confidence\[i\] + 0.0025 * (rao.rant(1,10) - 5)



plt.show()

以下是支持度和置信度的散点图:



如何为数据挖掘中的关联规则创建数据可视化

为了将关联规则表示为图。这是关联规则示例:(豆,洋葱)==>(鸡蛋)

下面的有向图是为此规则构建的,如下所示。具有 R0 的节点标识一个规则,并且它总是具有传入和传出边。传入边将代表规则前项,箭头在节点旁边。

下面是一个从实例数据集中提取的所有规则的图形例子。

这是构建关联规则的源代码。

import networkx as nx 
  G1 = nx.iGaph()
   
  colr_ap=\[\]
  N = 50
  colors = np.randm.rndN)   
   
   
  for i in range (rue\_o\_w):     
    G1.a\_od\_from(\["R"+st(i)\])
    
     
    for a in rsloc\[i\]\['anedts'\]:
                
        G1.dnoesrom(\[a\])
        G1.adedg(a, "R"+str(i))
       
    for c in ruleioc\[i\]\[''\]:
             
            G1.addnodsom()
            
            G1.adddge"R"str(i), c, colo=\[i\], weht=2)
  for noe in G1:
       fod_astring = alse
       for iem in sts:
           if nde==itm:
                found\_a\_ring = True
       if fond_sting:
            cor_mp.apend('ellw')
       else:
            cor_mapapped('green')
            plt.show()


在线零售数据集的数据可视化

为了对可视化进行真实感受和测试,我们可以采用可用的在线零售商店数据集并应用关联规则图的代码。

以下是支持度和置信度的散点图结果。这次使用seaborn库来构建散点图。下面是零售数据集关联规则(前 10 条规则)的可视化。

目录
打赏
0
4
4
2
114
分享
相关文章
1688商品详情API实战:Python调用全流程与数据解析技巧
本文介绍了1688电商平台的商品详情API接口,助力电商从业者高效获取商品信息。接口可返回商品基础属性、价格体系、库存状态、图片描述及商家详情等多维度数据,支持全球化语言设置。通过Python示例代码展示了如何调用该接口,帮助用户快速上手,适用于选品分析、市场研究等场景。
从算法菜鸟到挖掘达人:数据挖掘的算法大冒险
从算法菜鸟到挖掘达人:数据挖掘的算法大冒险
113 18
在Python中对数据点进行标签化
本文介绍了如何在Python中使用Matplotlib和Seaborn对数据点进行标签化,提升数据可视化的信息量与可读性。通过散点图示例,展示了添加数据点标签的具体方法。标签化在标识数据点、分类数据可视化及趋势分析中具有重要作用。文章强调了根据需求选择合适工具,并保持图表清晰美观的重要性。
62 15
如何使用Python进行数据可视化
Python是一种强大的编程语言,广泛应用于数据分析与可视化。常见的可视化库有Matplotlib、Seaborn和Plotly等。数据可视化通常包括以下步骤:准备数据(如列表或从文件读取)、选择合适的工具、绘制图表、优化样式(如标题和标签)以及保存或分享结果。例如,使用Matplotlib可通过简单代码绘制线图并添加标题和轴标签。实际应用中,可通过调整颜色、样式等进一步优化图表,甚至使用交互式工具提升效果。总之,Python的丰富工具为数据可视化提供了强大支持。
1688 商品数据接口终极指南:Python 开发者如何高效获取标题 / 价格 / 销量数据(附调试工具推荐)
1688商品列表API是阿里巴巴开放平台提供的服务,允许开发者通过API获取1688平台的商品信息(标题、价格、销量等)。适用于电商选品、比价工具、供应链管理等场景。使用时需构造请求URL,携带参数(如q、start_price、end_price等),发送HTTP请求并解析返回的JSON/XML数据。示例代码展示了如何用Python调用该API获取商品列表。
133 18
|
2月前
|
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
117 18

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问