R语言可视化:ggplot2冲积/桑基图sankey分析大学录取情况、泰坦尼克幸存者数据

简介: R语言可视化:ggplot2冲积/桑基图sankey分析大学录取情况、泰坦尼克幸存者数据

本文介绍了冲积/桑基图,以及

  • 定义了命名方案和冲积/桑基图的基本组成部分(轴、冲积层、流)。
  • 描述了所识别的冲积/桑基图数据结构。
  • 展示了一些流行的主题。

冲积/桑基图

这里有一个典型的冲积/桑基图。

现在,我们以该图像为参考点,定义典型冲积图的以下元素。

  • 轴是一个维度(变量),数据沿着这个维度在一个固定的水平位置被垂直分组。上面的图使用了三个分类轴。 船舱等级、性别和年龄。
  • 每个轴上的组被描述为不透明的块,称为类别。例如,类别轴包含四个等级的舱:一等舱、二等舱、三等舱和船员。
  • 水平样条被称为冲积流,横跨该图。在该图中,每个冲积层对应于每个轴变量的一个固定值,由其在轴上的垂直位置表示,由其填充颜色表示。
  • 相邻轴对之间的冲积段是流动的。
  • 冲积与层相交的节点。节点在上面的图中并不直观,但可以推断为填充的矩形,它将层中的流延伸到图的两端,或者将中心层两边的流连接起来。

正如下一节中的例子所示,这些元素中哪些被纳入冲积图,取决于基础数据的结构和创建者希望图中传达的内容。

冲积/桑基图数据

识别两种格式的 "冲积/桑基图数据",它们基本上对应于分类重复测量数据的 "宽 "和 "长 "格式。第三种,表格(或数组)形式,流行于存储具有多个分类维度的数据,如泰坦尼克号幸存数据和大学录取情况数据集。

(宽)格式数据

宽格式数据每一行都对应于在每个变量上取一个特定值的观察队列,每个变量都有自己的列。另外一列包含了每一行的数量,如队列中的观察单元数,可用于控制层的高度。基本上,宽格式由每一冲积层的一行组成。这是基础函数as.data.frame()转换频率表的格式,例如3维的大学录取情况数据集。

head(as.data.frame(UCBAdmissions), n = 12)

这种格式:用户声明数量的轴变量,识别并处理。


``````
plot(pltdat1,
 aes(y = Freq)) +
strat(width = 1/12) +
geom_label(stat = "stratum")) +
ggtitle("大学录取和拒绝情况,按性别和系别分列")+theme_bw()

这些图的一个重要特征是纵轴的意义。各层之间没有插入空隙,所以图的总高度反映了观测值的累积数量。


``````

plot((Titanic),stratumwidth = 1/8, reverse = FALSE ,stat = "stratum", aes(label = after_stat(stratum)), labels = c("幸存", "性别", "船舱等级")) +

title("按等级和性别划分的泰坦尼克号幸存状况")+theme_bw()

这种格式和功能对很多应用都很有用。

  • axis[0-9]*表示位置。
  • 由stat_stratum()产生的分层变量。
  • 横轴反映识别该轴的隐含分类变量。

此外,像填充这样的格式美学对于每个冲积图来说都是固定的;例如,它们不能根据每个轴的取值而在轴之间变化。这意味着,尽管它们可以重现平行集的分支树结构,但这种格式和功能不能产生具有这里("冲积图")和这里("控制颜色")特色的颜色方案的冲积图,它们在每个轴上都被 "重置"。

(长)格式

长格式包含了每一节的一行,变成一个键值对,编码轴为键,层为值的列。这种格式需要一个额外的索引列,将对应于一个共同队列的行连接起来,即一个冲积层的结点。

在宽格式(alluvia)和长格式(lodes)之间转换数据的函数包括几个参数。

同样的stat和geom可以使用一套不同的位置美学来接收这种格式的数据。

  • x,表示该行所对应的轴的 "键 "变量,要沿横轴排列。
  • 层,由x表示的轴变量的 "值";以及
  • 冲积层,连接单个冲积层的行的索引方案。

难民数据分析

在这些情况下,分层没有包含比冲积层更多的信息,因此通常不会被绘制。作为一个例子,我们可以将难民数据集中的国家按地区分组,以比较不同规模的难民数量。

qplot(data = Refug,x = year, y = refugees,

alluvium = country,fill = country,

colour = country)

该格式允许我们指定沿同一冲积层的不同轴线变化的美学,对重复测量数据集很有用。需要为每个冲积物生成一个单独的图形对象。

学术课程分析

下面的图表使用了一组学生在几个学期内的学术课程的(变化)。在所有学期中跟踪每个学生。

ggplot(majos,flow = "alluvium", lode = "frontback",legend.position = "bottom")

分层高度y没有被指定,所以每一行都被赋予单位高度。这个例子展示了处理缺失数据的一种方式。缺失数据的处理(特别是层的顺序)也取决于层变量是字符还是因子/数字的。

最后,我们提供了汇总相邻轴之间流量的选项。我们可以在流感疫苗调查的数据上演示这个选项。

qplot(vaccina,x = survey, stratum = response, alluvium = subject,

          y = freq, stat = "stratum", size = 3)

这张图忽略了轴之间流动的连续性。这种 "无记忆 "图产生了一个不那么杂乱的图,其中最多只有一个流量从一个轴上的每个层到下一个轴上的每个层。


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
29天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
44 3
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
71 3
下一篇
无影云桌面