架构设计|基于 raft-listener 实现实时同步的主备集群

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 本文介绍如何从数据库内核角度建立一套实时同步的主备集群,确保线上业务的高可用性和可靠性。本系统采用双 AZ 主备容灾机制,并要求数据与 schema 实时同步,同步时延平均在 1 秒内,p99 在 2 秒内。此外,系统支持高效的自动或手动主备切换,并能在切换过程中恢复丢失数据。

背景以及需求

  1. 线上业务对数据库可用性可靠性要求较高,要求需要有双 AZ 的主备容灾机制。
  2. 主备集群要求数据和 schema 信息实时同步,数据同步平均时延要求在 1s 之内,p99 要求在 2s 之内。
  3. 主备集群数据要求一致
  4. 要求能够在主集群故障时高效自动主备倒换或者手动主备倒换,主备倒换期间丢失的数据可找回。

为什么使用 Listener

Listener:这是一种特殊的 Raft 角色,并不参与投票,也不能用于多副本的数据一致性。

原本的 NebulaGraph 中的 Listener 是一个 Raft 监听器,它的作用是将数据异步写入外部的 Elasticsearch 集群,并在查询时去查找 ES 以实现全文索引的功能。

这里我们需要的是 Listener 的监听能力,用于快速同步数据到其他集群,并且是异步的执行,不影响主集群的正常读写。

这里我们需要定义两个新的 Listener 类型:

  1. Meta Listener:用于同步表结构以及其他元数据信息
  2. Storage Listener:用于同步 storaged 服务的数据

这样 storaged 服务和 metad 服务的 part leader 节点接受到写请求时,除了同步一份数据给 follower 节点,也会同步一份给各自的 listener 节点。

备集群如何接受数据?

现在我们面临几个问题:

  1. 两个新增 Listener 在接收到 leader 同步的日志后,应该如何再同步给备集群?
  2. 我们需要匹配和解析不同的数据操作,例如添加点、删除点、删除边、删除带索引的数据等等操作;
  3. 我们需要将解析到的不同操作的数据重新组装成一个请求发送给备集群的 storaged 服务和 metad 服务;

通过走读 nebula-storaged 的内核代码我们可以看到,无论是 metad 还是 storaged 的各种创建删除表结构以及各种类型数据的插入,最后都会序列化成一个 wal 的 log 发送给 follower 以及 listener 节点,最后存储在 RocksDB 中。

因此,我们的 listener 节点需要具备从 log 日志中解析并识别操作类型的能力,和封装成原请求的能力,因为我们需要将操作同步给备集群的 metad 以及 storaged 服务。

这里涉及到一个问题,主集群的 listener 需要如何感知备集群?备集群 metad 服务的信息以及 storaged 服务的信息?从架构设计上来看,两个集群之间应该有一个接口通道互相连接,但又不干涉,如果由 listener 节点直接发送请求给备集群的 nebula 进程,两个集群的边界就不是很明显了。所以这里我们再引入一个备集群的服务 listener 服务,它用于接收来自主集群的 listener 服务的请求,并将请求转发给自己集群的 metad 以及 storaged 服务。

这样做的好处。两边集群的服务模块是对称的,方便我们后面快速地做主备切换。

Listener 节点的管理和可靠性

为了保证双 AZ 环境的可靠性,很显然 Listener 节点也是需要多节点多活的,在 nebula 内核源码中是有对于 listener 的管理逻辑,但是比较简单,我们还需要设计一个 ListenerManager 实现以下几点能力:

  1. listener 节点注册以及删除命令
  2. listener 节点动态负载均衡(尽量每个 space 各个 part 分布的 listener 要均匀)
  3. listener 故障切换

节点注册管理以及负载均衡都比较简单好设计,比较重要的一点是故障切换应该怎么做?

listener 故障切换的设计

listener 节点故障切换的需求可以拆分为以下几个部分:

  1. listener 同步 wal 日志数据时周期性记录同步的进度(commitId && appendLogId);
  2. ListenerManager 感知到 listener 故障后,触发动态负载均衡机制,将故障 listener 的 part 分配给其他在运行的 listener;
  3. 分配到新 part 的 listener 们获取原先故障 listener 记录的同步进度,并以该进度为起始开始同步数据;

至于 listener 同步 wal 日志数据时周期性记录同步的进度应该记录到哪里?可以是存储到 metad 服务中,也可以存储到 storaged 服务对应的 part 中。

nebula 主备切换设计

在聊主备切换之前,我们还需要考虑一件事,那就是双 AZ 环境中,应该只能有主集群是可读可写的,而其他备集群应该是只读不能写。这样是为了保证两边数据的最终一致性,备集群的写入只能是由主集群的 listener 请求来写入的,而不能被 graphd 服务的请求写入。

所以我们需要对集群状态增加一种“只读模式”,在这种只读模式下,表明当前集群状态是处于备集群的状态,拒绝来自 graphd 服务的写操作。同样的,备集群的 listener 节点处在只读状态时,也只能接收来自主集群的请求并转发给备集群的进程,拒绝来自备集群的 wal 日志同步。

主备倒换发生时,需要有以下几个动作:

  1. 主集群的每个 listener 记录自己所负责的 part 的同步进度(commitId && appendLogId);
  2. 备集群的 nebula 服务转换为可写;
  3. 备集群的 listener 节点转换为可写,并且开始接收来自自己集群的 metad 和 storaged 进程的 wal 日志;
  4. 主集群的 listener 以及各个服务转换为只读状态,开始接收来自新的主集群的数据同步请求;

这几个动作细分下来,最主要的内容就是状态转换以及上下文信息保存和同步,原主集群需要保存自己主备切换前的上文信息(比如同步进度),新的主集群需要加载自己的数据同步起始进度(从当前最新的 commitLog 开始)

主备切换过程中的数据丢失问题

很明显,在上面的设计中,当主备切换发生时,会有一段时间的“双主”的阶段,在这个阶段内,原主集群的剩余日志已经不能再同步给备集群了,这就是会被丢失的数据。如何恢复这些被丢失的数据,可能的方案有很多,因为原主集群的同步进度是有记录的,有哪些数据还没同步完也是可以查询到的,所以可以手动或者自动去单独地同步那一段缺失数据。

当然这种方案也会引入新的问题,这段丢失地数据同步给主集群后,主集群会再次同步一遍回现在的备集群,一段 wal 数据的两次重复操作,不知道为引起什么其他的问题。

所以关于主备切换数据丢失的问题,我们还没有很好的处理方案,感兴趣的伙伴欢迎在评论区讨论。


感谢你的阅读 (///▽///)

对图数据库 NebulaGraph 感兴趣?欢迎前往 GitHub ✨ 查看源码:https://github.com/vesoft-inc/nebula

想和其他图技术爱好者一起交流心得?和 NebulaGraph 星云小姐姐 交个朋友再进个交流群;

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
153 6
|
15天前
|
人工智能 云计算 网络架构
阿里云引领智算集群网络架构的新一轮变革
11月8日~10日在江苏张家港召开的CCF ChinaNet(即中国网络大会)上,众多院士、教授和业界技术领袖齐聚一堂,畅谈网络未来的发展方向,聚焦智算集群网络的创新变革。
阿里云引领智算集群网络架构的新一轮变革
|
16天前
|
负载均衡 Dubbo 算法
集群容错架构设计
集群容错架构设计
25 1
集群容错架构设计
|
14天前
|
人工智能 运维 网络架构
阿里云引领智算集群网络架构的新一轮变革
11月8日至10日,CCF ChinaNet(中国网络大会)在江苏张家港召开,众多院士、教授和技术领袖共聚一堂,探讨网络未来发展方向。阿里云研发副总裁蔡德忠发表主题演讲,展望智算技术发展趋势,提出智算网络架构变革的新思路,发布高通量以太网协议和ENode+超节点系统规划,引起广泛关注。阿里云HPN7.0引领智算以太网生态蓬勃发展,成为业界标杆。未来,X10规模的智算集群将面临新的挑战,Ethernet将成为主流方案,推动Scale up与Scale out的融合架构,提升整体系统性能。
|
11天前
|
存储 缓存 NoSQL
【赵渝强老师】Memcached集群的架构
Memcached 是一个高性能的分布式内存对象缓存系统,通过在内存中维护一个巨大的 Hash 表来存储各种格式的数据,如图像、视频、文件及数据库检索结果等。它主要用于减轻数据库压力,提高网站系统的性能。Memcached 不支持数据持久化,因此仅作为缓存技术使用。其数据分布式存储由客户端应用程序实现,而非服务端。
【赵渝强老师】Memcached集群的架构
|
12天前
|
调度 Docker 容器
【赵渝强老师】Docker Swarm集群的体系架构
Docker Swarm自1.12.0版本起集成至Docker引擎,无需单独安装。它内置服务发现功能,支持跨多服务器或宿主机创建容器,形成集群提供服务。相比之下,Docker Compose仅限于单个宿主机。Docker Swarm采用主从架构,Swarm Manager负责管理和调度集群中的容器资源,用户通过其接口发送指令,Swarm Node根据指令创建容器运行应用。
|
1月前
|
负载均衡 安全 调度
Docker Swarm集群架构
【10月更文挑战第8天】
58 1
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
Hadoop-12-Hive 基本介绍 下载安装配置 MariaDB安装 3台云服务Hadoop集群 架构图 对比SQL HQL
66 3
|
1月前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
40 0
|
1月前
|
SQL 存储 分布式计算
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
大数据-93 Spark 集群 Spark SQL 概述 基本概念 SparkSQL对比 架构 抽象
41 0
下一篇
无影云桌面