超越GPT-4V,苹果多模态大模型上新!

简介: 【4月更文挑战第17天】苹果公司推出Ferret-UI,一款专为移动UI理解的新型MLLM,优于GPT-4V。该模型针对移动UI特点优化,采用“任意分辨率”技术处理屏幕细节,通过广泛的基础UI任务和高级任务训练,提升理解和推理能力。在基准测试中,Ferret-UI表现突出,显示了苹果在多模态语言模型领域的领先地位。尽管面临灵活性和训练数据质量挑战,Ferret-UI为移动应用自动化和智能助手发展开辟新路径。

32.jpg
在人工智能领域,多模态大型语言模型(MLLMs)的发展一直是研究的热点。近期,苹果公司推出了一款专为移动用户界面(UI)理解而设计的新型MLLM——Ferret-UI。这一创新模型不仅在理论上取得了显著进展,更在实际应用中展现出了超越现有技术,包括GPT-4V在内的强大能力。

Ferret-UI模型的核心优势在于其对移动UI屏幕的深入理解和高效交互。与一般领域的MLLMs相比,Ferret-UI专门针对移动UI屏幕的特点进行了优化,如更长的宽高比和更小的感兴趣对象(如图标、文本等)。为了解决这些问题,Ferret-UI引入了“任意分辨率”技术,通过放大细节来增强视觉特征,从而更好地处理UI屏幕的子图像。

在训练过程中,Ferret-UI从广泛的基础UI任务中收集训练样本,如图标识别、文本查找和部件列表等。这些样本经过精心格式化,以便于模型进行精确的引用和定位。此外,为了提升模型的推理能力,研究团队还编译了一个包含高级任务的数据集,这些任务包括详细描述、感知/交互对话和功能推断等。经过这些定制化的训练,Ferret-UI在理解UI屏幕和执行开放式指令方面表现出色。

在评估模型性能时,研究者们建立了一个全面的基准测试,涵盖了所有前述任务。测试结果显示,Ferret-UI不仅在大多数开源UI MLLMs中表现突出,而且在所有基础UI任务上都超过了GPT-4V。这一成果标志着苹果公司在多模态大型语言模型领域迈出了重要的一步。

然而,Ferret-UI模型的成功并非没有挑战。在实际应用中,模型需要处理各种复杂的UI屏幕,这要求它具备极高的灵活性和适应性。此外,模型的性能在很大程度上依赖于训练数据的质量和多样性。如果训练数据存在偏差或不足,可能会影响模型的泛化能力和准确性。

尽管存在这些挑战,Ferret-UI的推出无疑是人工智能领域的一大进步。它不仅为移动应用的自动化和可访问性提供了新的可能性,也为未来的多模态交互和智能助手的发展奠定了坚实的基础。随着技术的不断进步和优化,我们有理由相信,Ferret-UI将在未来的智能设备交互中发挥更加关键的作用。

论文地址:https://arxiv.org/pdf/2404.05719.pdf

目录
相关文章
|
2月前
|
存储 数据采集 数据安全/隐私保护
商汤、清华、复旦等开源百亿级多模态数据集,可训练类GPT-4o模型
商汤科技、清华大学和复旦大学等机构联合开源了名为OmniCorpus的多模态数据集,规模达百亿级,旨在支持类似GPT-4级别的大型多模态模型训练。该数据集包含86亿张图像和1696亿个文本标记,远超现有数据集规模并保持高质量,具备广泛来源和灵活性,可轻松转换为纯文本或图像-文本对。经验证,该数据集质量优良,有望促进多模态模型研究,但同时也面临存储管理、数据偏见及隐私保护等挑战。
157 60
|
4月前
|
存储 人工智能 异构计算
大模型下HPE GPT解决问题之确保服务高效可靠如何解决
大模型下HPE GPT解决问题之确保服务高效可靠如何解决
36 0
|
28天前
|
人工智能 测试技术 人机交互
mini-GPT4o来了? 能看、能听、会说,还情感丰富的多模态全能助手EMOVA
【10月更文挑战第24天】EMOVA(EMotionally Omni-present Voice Assistant)是一项多模态全能助手的研究,旨在实现更自然、更智能的人机交互。该模型不仅能够处理图像、文本和语音,还具备丰富的情感表达能力。通过语义-声学解耦的语音标记器、全模态对齐和轻量级风格模块,EMOVA在视觉-语言和语音基准测试中表现出色,适用于智能助手、虚拟现实、教育和娱乐等领域。
20 3
|
2月前
|
机器学习/深度学习 弹性计算 人工智能
大模型进阶微调篇(三):微调GPT2大模型实战
本文详细介绍了如何在普通个人电脑上微调GPT2大模型,包括环境配置、代码实现和技术要点。通过合理设置训练参数和优化代码,即使在无独显的设备上也能完成微调,耗时约14小时。文章还涵盖了GPT-2的简介、数据集处理、自定义进度条回调等内容,适合初学者参考。
222 6
|
2月前
|
机器学习/深度学习 测试技术
ACL杰出论文奖:GPT-4V暴露致命缺陷?JHU等发布首个多模态ToM 测试集,全面提升大模型心智能力
【10月更文挑战第6天】约翰斯·霍普金斯大学等机构提出了一项荣获ACL杰出论文奖的研究,旨在解决大模型在心智理论(ToM)上的不足。他们发布了首个MMToM-QA多模态ToM测试集,并提出BIP-ALM方法,从多模态数据中提取统一表示,结合语言模型进行贝叶斯逆规划,显著提升了模型的ToM能力。这一成果为机器与人类自然交互提供了新思路,尽管仍面临一些局限性和技术挑战。论文详情见:https://arxiv.org/abs/2401.08743。
48 6
|
3月前
|
数据采集 自然语言处理 监控
大模型微调使GPT3成为了可以聊天发布指令的ChatGPT
正是通过微调大模型使得GPT3成为了可以聊天发布指令的ChatGPT。聊天大模型在通用大模型的基础上加一层微调就实现人人能用的大模型,使得通用大模型的能力被更多人使用和了解。
58 4
大模型微调使GPT3成为了可以聊天发布指令的ChatGPT
|
2月前
|
开发工具 git
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
LLM-03 大模型 15分钟 FineTuning 微调 GPT2 模型 finetuning GPT微调实战 仅需6GB显存 单卡微调 数据 10MB数据集微调
60 0
|
3月前
|
编解码 定位技术 计算机视觉
多模态LLM视觉推理能力堪忧,浙大领衔用GPT-4合成数据构建多模态基准
【9月更文挑战第2天】浙江大学领衔的研究团队针对多模态大型模型(MLLM)在抽象图像理解和视觉推理上的不足,提出了一种利用GPT-4合成数据构建多模态基准的方法。该研究通过合成数据提高了MLLM处理图表、文档等复杂图像的能力,并构建了一个包含11,193条指令的基准,涵盖8种视觉场景。实验表明,这种方法能显著提升模型性能,但依赖闭源模型和高计算成本是其局限。论文详细内容见:https://arxiv.org/pdf/2407.07053
80 10
|
4月前
|
机器学习/深度学习
清华领衔发布多模态评估MultiTrust:GPT-4可信度有几何?
【8月更文挑战第16天】近日,清华大学等机构发布了MultiTrust多模态评估研究,旨在全面评估大型语言模型的可信度。这是首个统一的多模态基准,覆盖真实性、安全性等五大方面,包含32个任务。研究对21个现代模型进行了实验,揭示了可信度问题和风险,强调了提高模型可靠性的重要性。结果显示开源模型在可信度上落后于专有模型,特别是在安全性方面。此外,研究还发现了模型在鲁棒性、公平性和隐私方面的挑战。论文已发布于arxiv.org。
66 1
|
4月前
|
人工智能 测试技术
真相了!大模型解数学题和人类真不一样:死记硬背、知识欠缺明显,GPT-4o表现最佳
【8月更文挑战第15天】WE-MATH基准测试揭示大型多模态模型在解决视觉数学问题上的局限与潜力。研究涵盖6500题,分67概念5层次,评估指标包括知识与泛化不足等。GPT-4o表现最优,但仍存多步推理难题。研究提出知识概念增强策略以改善,为未来AI数学推理指明方向。论文见: https://arxiv.org/pdf/2407.01284
50 1

热门文章

最新文章