Python中用PyTorch机器学习神经网络分类预测银行客户流失模型

简介: Python中用PyTorch机器学习神经网络分类预测银行客户流失模型

分类问题属于机器学习问题的类别,其中给定一组特征,任务是预测离散值。分类问题的一些常见示例是,预测肿瘤是否为癌症,或者学生是否可能通过考试。在本文中,鉴于银行客户的某些特征,我们将预测客户在6个月后是否可能离开银行。客户离开组织的现象也称为客户流失。因此,我们的任务是根据各种客户特征预测客户流失。


$ pip install pytorch

数据集

让我们将所需的库和数据集导入到我们的Python应用程序中:

import torch
import torch.nn as nn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline


我们可以使用pandas库的read_csv()方法来导入包含我们的数据集的CSV文件。

dataset = pd.read_csv(r'E:Datasetscustomer_data.csv')


让我们输出数据集 :

dataset.shape


输出:

(10000, 14)


输出显示该数据集具有1万条记录和14列。我们可以使用head()数据框的方法来输出数据集的前五行。

dataset.head()


输出:

您可以在我们的数据集中看到14列。根据前13列,我们的任务是预测第14列的值,即Exited

探索性数据分析

让我们对数据集进行一些探索性数据分析。我们将首先预测6个月后实际离开银行并使用饼图进行可视化的客户比例。让我们首先增加图形的默认绘图大小:

fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 10
fig_size[1] = 8
plt.rcParams["figure.figsize"] = fig_size


以下脚本绘制该Exited列的饼图。

dataset.Exited.value_counts().plot(kind='pie', autopct='%1.0f%%', colors=['skyblue', 'orange'], explode=(0.05, 0.05))


输出:

输出显示,在我们的数据集中,有20%的客户离开了银行。这里1代表客户离开银行的情况,0代表客户没有离开银行的情况。让我们绘制数据集中所有地理位置的客户数量:

输出显示,几乎一半的客户来自法国,而西班牙和德国的客户比例分别为25%。

现在,让我们绘制来自每个唯一地理位置的客户数量以及客户流失信息。我们可以使用库中的countplot()函数seaborn来执行此操作。

输出显示,尽管法国客户总数是西班牙和德国客户总数的两倍,但法国和德国客户离开银行的客户比例是相同的。同样,德国和西班牙客户的总数相同,但是离开银行的德国客户数量是西班牙客户的两倍,这表明德国客户在6个月后离开银行的可能性更大。

数据预处理

在训练PyTorch模型之前,我们需要预处理数据。如果查看数据集,您将看到它具有两种类型的列:数值列和分类列。数字列包含数字信息。CreditScoreBalanceAge等。类似地,GeographyGender是分类列,因为它们含有分类信息,如客户的位置和性别。有几列可以视为数字列和类别列。例如,该HasCrCard列的值可以为1或0。但是,那HasCrCard列包含有关客户是否拥有信用卡的信息。

让我们再次输出数据集中的所有列,并找出哪些列可以视为数字列,哪些列应该视为类别列。columns数据框的属性显示所有列名称:

Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography', 'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited'], dtype='object')


从我们的数据列,我们将不使用的RowNumberCustomerId以及Surname列,因为这些列的值是完全随机的,并与输出无关。例如,客户的姓氏对客户是否离开银行没有影响。其中列的其余部分,GeographyGenderHasCrCard,和IsActiveMember列可以被视为类别列。让我们创建这些列的列表:除该列外,其余所有列均可视为数字列。

numerical_columns = ['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'EstimatedSalary']


最后,输出(Exited列中的值)存储在outputs变量中。

我们已经创建了分类,数字和输出列的列表。但是,目前,分类列的类型不是分类的。您可以使用以下脚本检查数据集中所有列的类型:

输出:

RowNumber            int64
CustomerId           int64
Surname             object
CreditScore          int64
Geography           object
Gender              object
Age                  int64
Tenure               int64
Balance            float64
NumOfProducts        int64
HasCrCard            int64
IsActiveMember       int64
EstimatedSalary    float64
Exited               int64
dtype: object


您可以看到GeographyGender列的类型是object,HasCrCardIsActive列的类型是int64。我们需要将分类列的类型转换为category。我们可以使用astype()函数来做到这一点,

现在,如果再次绘制数据集中各列的类型,您将看到以下结果:

输出量

RowNumber             int64
CustomerId            int64
Surname              object
CreditScore           int64
Geography          category
Gender             category
Age                   int64
Tenure                int64
Balance             float64
NumOfProducts         int64
HasCrCard          category
IsActiveMember     category
EstimatedSalary     float64
Exited                int64
dtype: object


现在让我们查看Geography列中的所有类别:

Index(['France', 'Germany', 'Spain'], dtype='object')


当您将列的数据类型更改为类别时,该列中的每个类别都会分配一个唯一的代码。例如,让我们绘制列的前五行,Geography并输出前五行的代码值:

输出:

0    France
1     Spain
2    France
3    France
4     Spain
Name: Geography, dtype: category
Categories (3, object): [France, Germany, Spain]


以下脚本在该列的前五行中绘制了值的代码Geography

输出:

0    0
1    2
2    0
3    0
4    2
dtype: int8


输出显示法国已编码为0,西班牙已编码为2。

将分类列与数字列分开的基本目的是,可以将数字列中的值直接输入到神经网络中。但是,必须首先将类别列的值转换为数字类型。分类列中的值的编码部分地解决了分类列的数值转换的任务。

由于我们将使用PyTorch进行模型训练,因此需要将分类列和数值列转换为张量。首先让我们将分类列转换为张量。在PyTorch中,可以通过numpy数组创建张量。我们将首先将四个分类列中的数据转换为numpy数组,然后将所有列水平堆叠,如以下脚本所示:

geo = dataset['Geography'].cat.codes.values
...


上面的脚本输出分类列中前十条记录。输出如下:输出:

array([[0, 0, 1, 1],
       [2, 0, 0, 1],
       [0, 0, 1, 0],
       [0, 0, 0, 0],
       [2, 0, 1, 1],
       [2, 1, 1, 0],
       [0, 1, 1, 1],
       [1, 0, 1, 0],
       [0, 1, 0, 1],
       [0, 1, 1, 1]], dtype=int8)


现在要从上述numpy数组创建张量,您只需将数组传递给模块的tensortorch

输出:

tensor([[0, 0, 1, 1],
        [2, 0, 0, 1],
        [0, 0, 1, 0],
        [0, 0, 0, 0],
        [2, 0, 1, 1],
        [2, 1, 1, 0],
        [0, 1, 1, 1],
        [1, 0, 1, 0],
        [0, 1, 0, 1],
        [0, 1, 1, 1]])


在输出中,您可以看到类别数据的numpy数组现在已转换为tensor对象。同样,我们可以将数值列转换为张量:

numerical_data = np.stack([dataset[col].values for col in numerical_columns], 1)
...


输出:

tensor([[6.1900e+02, 4.2000e+01, 2.0000e+00, 0.0000e+00, 1.0000e+00, 1.0135e+05],
        [6.0800e+02, 4.1000e+01, 1.0000e+00, 8.3808e+04, 1.0000e+00, 1.1254e+05],
        [5.0200e+02, 4.2000e+01, 8.0000e+00, 1.5966e+05, 3.0000e+00, 1.1393e+05],
        [6.9900e+02, 3.9000e+01, 1.0000e+00, 0.0000e+00, 2.0000e+00, 9.3827e+04],
        [8.5000e+02, 4.3000e+01, 2.0000e+00, 1.2551e+05, 1.0000e+00, 7.9084e+04]])


在输出中,您可以看到前五行,其中包含我们数据集中六个数字列的值。最后一步是将输出的numpy数组转换为tensor对象。输出:

tensor([1, 0, 1, 0, 0])


现在,让我们绘制分类数据,数值数据和相应输出的形状: 输出:

torch.Size([10000, 4])
torch.Size([10000, 6])
torch.Size([10000])


在训练模型之前,有一个非常重要的步骤。我们将分类列转换为数值,其中唯一值由单个整数表示。例如,在该Geography列中,我们看到法国用0表示,德国用1表示。我们可以使用这些值来训练我们的模型。但是,更好的方法是以N维向量的形式表示分类列中的值,而不是单个整数。

我们需要为所有分类列定义矢量大小。关于维数没有严格的规定。定义列的嵌入大小的一个好的经验法则是将列中唯一值的数量除以2(但不超过50)。例如,对于该Geography列,唯一值的数量为3。该Geography列的相应嵌入大小将为3/2 = 1.5 = 2(四舍五入)。以下脚本创建一个元组,其中包含所有类别列的唯一值数量和维度大小:

categorical_column_sizes = [len(dataset[column].cat.categories) for column in categorical_columns]
...


输出:

[(3, 2), (2, 1), (2, 1), (2, 1)]


使用训练数据对监督型深度学习模型(例如我们在本文中开发的模型)进行训练,并在测试数据集上评估模型的性能。因此,我们需要将数据集分为训练集和测试集,如以下脚本所示:

total_records = 10000
....


我们的数据集中有1万条记录,其中80%的记录(即8000条记录)将用于训练模型,而其余20%的记录将用于评估模型的性能。注意,在上面的脚本中,分类和数字数据以及输出已分为训练集和测试集。为了验证我们已正确地将数据分为训练和测试集:

print(len(categorical_train_data))
print(len(numerical_train_data))
print(len(train_outputs))
print(len(categorical_test_data))
print(len(numerical_test_data))
print(len(test_outputs))


输出:

8000
8000
8000
2000
2000
2000


创建预测模型

我们将数据分为训练集和测试集,现在是时候定义训练模型了。为此,我们可以定义一个名为的类Model,该类将用于训练模型。看下面的脚本:

class Model(nn.Module):
    def __init__(self, embedding_size, num_numerical_cols, output_size, layers, p=0.4):
        super().__init__()
        self.all_embeddings = nn.ModuleList([nn.Embedding(ni, nf) for ni, nf in embedding_size])
        self.embedding_dropout = nn.Dropout(p)
        self.batch_norm_num = nn.BatchNorm1d(num_numerical_cols)
        return x


接下来,要查找输入层的大小,将类别列和数字列的数量加在一起并存储在input_size变量中。之后,for循环迭代,并将相应的层添加到all_layers列表中。添加的层是:

  • Linear:用于计算输入和权重矩阵之间的点积
  • ReLu:用作激活函数
  • BatchNorm1d:用于对数字列应用批量归一化
  • Dropout:用于避免过拟合

在后for循环中,输出层被附加到的层的列表。由于我们希望神经网络中的所有层都按顺序执行,因此将层列表传递给nn.Sequential该类。

接下来,在该forward方法中,将类别列和数字列都作为输入传递。类别列的嵌入在以下几行中进行。

embeddings = []

数字列的批量归一化可通过以下脚本应用:

x_numerical = self.batch_norm_num(x_numerical)

最后,将嵌入的分类列x和数字列x_numerical连接在一起,并传递给sequence layers

训练模型

要训练模型,首先我们必须创建Model在上一节中定义的类的对象。

您可以看到我们传递了分类列的嵌入大小,数字列的数量,输出大小(在我们的例子中为2)以及隐藏层中的神经元。您可以看到我们有三个分别具有200、100和50个神经元的隐藏层。

让我们输出模型并查看:

print(model)


输出:

Model(
  (all_embeddings): ModuleList(
 ...
  )
)


您可以看到,在第一线性层中,in_features变量的值为11,因为我们有6个数字列,并且类别列的嵌入维数之和为5,因此6 + 5 = 11。out_features的值为2,因为我们只有2个可能的输出。

在实际训练模型之前,我们需要定义损失函数和将用于训练模型的优化器。以下脚本定义了损失函数和优化器:

loss_function = nn.CrossEntropyLoss()


现在,我们训练模型。以下脚本训练模型:

epochs = 300
aggregated_losses = []
for i in range(epochs):
print(f'epoch: {i:3} loss: {single_loss.item():10.10f}')


神经元元数设置为300,这意味着要训练模型,完整的数据集将使用300次。for为每次迭代期间循环的执行方式,损失是使用损耗函数来计算。每次迭代过程中的损失将添加到aggregated_loss列表中。

上面脚本的输出如下:


epoch: 1 loss: 0.71847951epoch: 26 loss: 0.57145703epoch: 51 loss: 0.48110831epoch: 76 loss: 0.42529839epoch: 101 loss: 0.39972275epoch: 126 loss: 0.37837571epoch: 151 loss: 0.37133673epoch: 176 loss: 0.36773482epoch: 201 loss: 0.36305946epoch: 226 loss: 0.36079505epoch: 251 loss: 0.35350436epoch: 276 loss: 0.35540250epoch: 300 loss: 0.3465710580

以下脚本绘制了各个时期的损失函数:


plt.plot(range(epochs), aggregated_losses)plt.ylabel('Loss')plt.xlabel('epoch');`

输出:

输出显示,最初损失函数迅速降低。在250个步长之后,损失几乎没有减少。

做出预测

最后一步是对测试数据进行预测。为此,我们只需要将categorical_test_datanumerical_test_data传递给model该类。然后可以将返回的值与实际测试输出值进行比较。以下脚本对测试类进行预测,并输出测试数据的交叉熵损失。

with torch.no_grad():

输出:

Loss: 0.36855841


测试集上的损失为0.3685,比训练集上获得的0.3465略多,这表明我们的模型有些过拟合。由于我们指定输出层将包含2个神经元,因此每个预测将包含2个值。例如,前5个预测值如下所示:

print(y_val[:5])


输出:

tensor([[ 1.2045, -1.3857],
        [ 1.3911, -1.5957],
        [ 1.2781, -1.3598],
        [ 0.6261, -0.5429],
        [ 2.5430, -1.9991]])


这种预测的思想是,如果实际输出为0,则索引0处的值应大于索引1处的值,反之亦然。我们可以使用以下脚本检索列表中最大值的索引:

y_val = np.argmax(y_val, axis=1)


输出:现在让我们再次输出y_val列表的前五个值:

print(y_val[:5])


输出:

tensor([0, 0, 0, 0, 0])


由于在最初预测的输出列表中,对于前五个记录,零索引处的值大于第一索引处的值,因此可以在已处理输出的前五行中看到0。

最后,我们可以使用从sklearn.metrics模块confusion_matrixaccuracy_score以及classification_report类找到了准确度,精密度和召回值,混淆矩阵。


`from sklearn.metrics import classification_report, confusion_matrix, accuracy_scoreprint(confusion_matrix(test_outputs,y_val))print(classification_report(test_outputs,y_val))print(accuracy_score(test_outputs, y_val))`

输出:


[[1527 83][ 224 166]]
precision    recall  f1-score   support
       0       0.87      0.95      0.91      1610
       1       0.67      0.43      0.52       390


micro avg 0.85 0.85 0.85 2000macro avg 0.77 0.69 0.71 2000weighted avg 0.83 0.85 0.83 20000.8465`

输出结果表明,我们的模型达到了84.65%的精度,考虑到我们随机选择神经网络模型的所有参数这一事实,这非常令人印象深刻。我建议您尝试更改模型参数,例如训练/测试比例,隐藏层的数量和大小等,以查看是否可以获得更好的结果。

结论

PyTorch是Facebook开发的常用深度学习库,可用于各种任务,例如分类,回归和聚类。本文介绍了如何使用PyTorch库对表格数据进行分类。


相关文章
|
18天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
78 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
299 55
|
2月前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
127 2
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
199 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
25天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
1月前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
92 3
|
2月前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
68 6
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
93 8
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。