R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据

介绍

Groupon是一个优惠券推荐服务,您可以免费注册Groupon,并且Groupon每天都会向您发送包含该地区当天交易的电子邮件。如果您喜欢这笔交易,那么您可以立即从Groupon购买,并在餐馆/商店兑换。

数据

这些数据是从Groupon网站的纽约市区域获得的。网站外观如下所示:

 

 

两个页面的布局都不是动态的,所以建立了一个自定义scrapy,以便快速浏览所有的页面并检索要分析的信息。然而,评论,重要的信息,通过Java呈现和加载,因此硒是使用的脚本。Selenium脚本使用从scrapy获取的groupons的URL,实质上模仿了人类点击用户注释部分中的“next”按钮。

从每个组中检索的数据如下所示。

Groupon标题

分类信息

交易位置

总评分数

作者日期

评论网址




print(all_groupon_reviews[all_groupon_reviews.content.apply(lambda x: isinstance(x, float))])
indx = [10096]
all_groupon_reviews.content.iloc[indx]
            author       date content  \
10096  Patricia D. 2017-02-15     NaN   
15846       Pat H. 2016-09-24     NaN   
19595      Tova F. 2012-12-20     NaN   
40328   Phyllis H. 2015-06-28     NaN   
80140     Andre A. 2013-03-26     NaN   
 
                                                 url  year  month  day  
10096  https://www.groupon.com/deals/statler-grill-9  2017      2   15  
15846         https://www.groupon.com/deals/impark-3  2016      9   24  
19595   https://www.groupon.com/deals/hair-bar-nyc-1  2012     12   20  
40328     https://www.groupon.com/deals/kumo-sushi-1  2015      6   28  
80140  https://www.groupon.com/deals/woodburybus-com  2013      3   26

探索性数据分析

一个有趣的发现是在过去的几年里,群体的使用已经大大增加了。我们通过检查评论提供的日期来发现这一点。看下面的图像,其中x轴表示月/年和y轴,表示计数,这个结论变得明显。最后的小幅下滑是由于当时的一些小组可能是季节性的。

一个有趣的发现是在过去的几年里,群体的使用已经大大增加了。我们通过检查评论提供的日期来发现这一点。看下面的图像,其中x轴表示月/年和y轴,表示计数,这个结论变得明显。最后的小幅下滑是由于当时的一些小组可能是季节性的。



pie_chart_df = Groupons.groupby('categories').agg('count')
 
plt.rcParams['figure.figsize'] = (8,8)
 
sizes = list(pie_chart_df.mini_info)
labels = pie_chart_df.index
plt.pie(sizes, shadow=True, labels = labels, autopct='%1.1f%%', startangle=140)
# plt.legend(labels, loc="best")
plt.axis('equal')

最后,导出了一个正则表达式来解析价格信息,以及它们提供的交易数量。该信息显示在以下条形图中:

最后,利用用户评论数据生成一个文字云:

主题建模

创建一个语料库的第一步是删除所有停用词。最后创造trigrams。

选择的模型是Latent Dirichlet Allocation,因为它能够区分来自不同文档的主题,并且存在一个可以清晰有效地将结果可视化的包。由于该方法是无监督的,因此必须事先选择主题数量,在模型的25次连续迭代中最优数目为3。结果如下:

 

上面的可视化是将主题投影到两个组件上,其中相似的主题会更接近,而不相似的主题会更远。右边的单词是组成每个主题的单词,

 

结论

主题建模是无监督学习的一种形式,这个项目的范围是在基础词语背后发现模型。

相关文章
|
4天前
|
人工智能 自然语言处理 数据可视化
Data Formulator:微软开源的数据可视化 AI 工具,通过自然语言交互快速创建复杂的数据图表
Data Formulator 是微软研究院推出的开源 AI 数据可视化工具,结合图形化界面和自然语言输入,帮助用户快速创建复杂的可视化图表。
157 9
Data Formulator:微软开源的数据可视化 AI 工具,通过自然语言交互快速创建复杂的数据图表
|
1月前
|
存储 人工智能 自然语言处理
Pandas数据应用:自然语言处理
本文介绍Pandas在自然语言处理(NLP)中的应用,涵盖数据准备、文本预处理、分词、去除停用词等常见任务,并通过代码示例详细解释。同时,针对常见的报错如`MemoryError`、`ValueError`和`KeyError`提供了解决方案。适合初学者逐步掌握Pandas与NLP结合的技巧。
70 20
|
4月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
90 2
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
【NLP自然语言处理】基于PyTorch深度学习框架构建RNN经典案例:构建人名分类器
|
4月前
|
自然语言处理
【NLP自然语言处理】文本特征处理与数据增强
【NLP自然语言处理】文本特征处理与数据增强
|
5月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
5月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
25天前
|
人工智能 自然语言处理 API
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
UI-TARS Desktop 是一款基于视觉语言模型的 GUI 代理应用,支持通过自然语言控制电脑操作,提供跨平台支持、实时反馈和精准的鼠标键盘控制。
529 17
用自然语言控制电脑,字节跳动开源 UI-TARS 的桌面版应用!内附详细的安装和配置教程
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI在自然语言处理中的突破:从理论到应用
AI在自然语言处理中的突破:从理论到应用
168 17