R语言ARIMA集成模型预测时间序列分析

简介: R语言ARIMA集成模型预测时间序列分析

本文我们使用4个时间序列模型对每周的温度序列建模。第一个是通过auto.arima获得的,然后两个是SARIMA模型,最后一个是Buys-Ballot方法。

我们使用以下数据





k=620
n=nrow(elec)
futu=(k+1):n
y=electricite$Load[1:k]
plot(y,type="l")

我们开始对温度序列进行建模(温度序列对电力负荷的影响很大)





y=Temp
plot(y,type="l")


abline(lm(y[ :k]~y[( :k)-52]),col="red")

 

时间序列是自相关的,在52阶





acf(y,lag=120)


 


model1=auto.arima(Y)
acf(residuals(model1),120)

我们将这个模型保存在工作空间中,然后查看其预测。让我们在这里尝试一下SARIMA





arima(Y,order = c(0,0,0),
seasonal = list(order = c(1,0,0)))

然后让我们尝试使用季节性单位根



Z=diff(Y,52)
arima(Z,order = c(0,0,1),
seasonal = list(order = c(0,0,1)))

然后,我们可以尝试Buys-Ballot模型




lm(Temp~0+as.factor(NumWeek),

对模型进行预测

plot(y,type="l",xlim=c(0,n )
abline(v=k,col="red")
lines(pre4,col="blue")



plot(y,type="l",xlim=c(0,n))
abline(v=k,col="red")



plot(y,type="l",xlim=c(0,n))



plot(y,type="l",xlim=c(0,n))
abline(v=k,col="red")

最后比较4个模型的结果



lines( MODEL$y1,col="
lines( MODEL$y2,col="green")
lines( MODEL$y3,col="orange")
lines( MODEL$y4,col="blue")

然后,我们可以尝试加权平均值来优化模型,而不是找出四个中的哪一个模型是“最优”,y ^ T = ∑iωiy ^ t(i)其中ω=(ωi),ω1+ ... +ωk= 1。然后,我们想要找到“最佳”权重。我们将在第一个m值上校准我们的四个模型,然后比较下111个值(和真实值)的预测组合,

 

我们使用前200个值。

然后,我们在这200个值上拟合4个模型

然后我们进行预测


y1=predict(model1,n.ahead = 111)$pred,
y2=predict(model2,n.ahead = 111)$pred,
y3=predict(model3,n.ahead = 111)$pred,
y4=predict(model4,n.ahead = 111)$pred+

为了创建预测的线性组合,我们使用






a=rep(1/4,4)
y_pr = as.matrix(DOS[,1:4]) %*% a

因此,我们可视化这4个预测,它们的线性组合(带有等权重)及其观察值

为了找到权重的“最佳”值,最小化误差平方和,我们使用以下代码





function(a) sum( DONN[,1:4  %*% a-DONN[,5 )^2

我们得到最优权重



optim(par=c(0,0,0),erreur2)$par

然后,我们需要确保两种算法的收敛性:SARIMA参数的估计算法和权重参数的研究算法




if(inherits(TRY, "try-error")   arima(y,order = c(4,0,0)
seasonal = list(order = c(1,0,0)),method="CSS")

然后,我们查看权重随时间的变化。

获得下图,其中粉红色的是Buys-Ballot,粉红色的是SARIMA模型,绿色是季节性单位根,



barplot(va,legend = rownames(counts)

我们发现权重最大的模型是Buys Ballot模型。

可以更改损失函数,例如,我们使用90%的分位数,



tau=.9
function(e) (tau-(e<=0))*e

在函数中,我们使用

 

 

这次,权重最大的两个模型是SARIMA和Buys-Ballot。


相关文章
|
8月前
|
人工智能 Kubernetes jenkins
容器化AI模型的持续集成与持续交付(CI/CD):自动化模型更新与部署
在前几篇文章中,我们探讨了容器化AI模型的部署、监控、弹性伸缩及安全防护。为加速模型迭代以适应新数据和业务需求,需实现容器化AI模型的持续集成与持续交付(CI/CD)。CI/CD通过自动化构建、测试和部署流程,提高模型更新速度和质量,降低部署风险,增强团队协作。使用Jenkins和Kubernetes可构建高效CI/CD流水线,自动化模型开发和部署,确保环境一致性并提升整体效率。
|
3月前
|
人工智能 JavaScript 安全
一文教你高效集成Qwen Code与ModelGate千万免费Toknn模型网关平台
本文详解如何高效集成Qwen Code与ModelGate模型网关平台,涵盖环境搭建、API配置、代码生成等关键步骤,助你实现智能编程与多模型管理,大幅提升AI开发效率。
|
6月前
|
人工智能 自然语言处理 DataWorks
DataWorks Copilot 集成Qwen3-235B-A22B混合推理模型,数据开发与分析效率再升级!
阿里云DataWorks平台正式接入Qwen3模型,支持最大235B参数量。用户可通过DataWorks Copilot智能助手调用该模型,以自然语言交互实现代码生成、优化、解释及纠错等功能,大幅提升数据开发与分析效率。Qwen3作为最新一代大语言模型,具备混合专家(MoE)和稠密(Dense)架构,适应多种应用场景,并支持MCP协议优化复杂任务处理。目前,用户可通过DataWorks Data Studio新版本体验此功能。
493 23
DataWorks Copilot 集成Qwen3-235B-A22B混合推理模型,数据开发与分析效率再升级!
|
4月前
|
传感器 人工智能 搜索推荐
M3T联邦基础模型用于具身智能:边缘集成的潜力与挑战
随着具身智能系统日益变得多模态、个性化和交互式,它们必须能够从多样化的感官输入中有效学习,持续适应用户偏好,并在资源和隐私约束下安全运行。这些挑战凸显了对能够在模型泛化与个性化之间取得平衡的同时实现快速、情境感知自适应能力的机器学习模型的迫切需求。在此背景下,两种方法脱颖而出,各自提供了部分所需能力:FMs为跨任务和跨模态的泛化提供了一条路径,FL)则为分布式、隐私保护的模型更新和用户级模型个性化提供了基础设施。然而,单独使用时,这两种方法都无法满足现实世界中具身环境复杂且多样化的能力要求。
124 0
|
7月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
255 9
|
8月前
|
人工智能 IDE 测试技术
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
通义灵码, 作为国内首个 AI 程序员,从最开始的内测到公测,再到通义灵码正式发布第一时间使用,再到后来使用企业定制版的通义灵码,再再再到现在通义灵码2.0,我可以说“用着”通义灵码成长的为数不多的程序员之一了吧。咱闲言少叙,直奔主题!今天,我会聊一聊通义灵码的新功能和通义灵码2.0与1.0的体验感。
|
8月前
|
人工智能 IDE 测试技术
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
用户说 | 通义灵码2.0,跨语言编码+自动生成单元测试+集成DeepSeek模型且免费使用
|
12月前
|
Java Maven Docker
gitlab-ci 集成 k3s 部署spring boot 应用
gitlab-ci 集成 k3s 部署spring boot 应用
|
11月前
|
消息中间件 监控 Java
您是否已集成 Spring Boot 与 ActiveMQ?
您是否已集成 Spring Boot 与 ActiveMQ?
322 0