R语言混合图形模型MGM的网络可预测性分析

简介: R语言混合图形模型MGM的网络可预测性分析

网络模型已经成为抽象复杂系统,是深入了解许多科学领域中观测变量之间的关系模式的流行方法。这些应用程序大多数集中于分析网络的结构。但是,如果不是直接观察网络,而是根据数据进行估算(如:吸烟与癌症之间存在关联),则除了网络结构外,我们还可以分析网络中节点的可预测性。也就是说:网络中的所有其余节点如何预测网络中的给定节点?

可预测性有趣,有几个原因:

  1. 它给我们提供了一个关于边的实用性的想法:如果节点A连接到许多其他节点,但是这些仅说明(假设)其方差的1%,那么边的连接会是怎样的?
  2. 它告诉我们网络的不同部分在多大程度上是网络中的其他因素决定的

在此博文中,我们使用R-估计网络模型并计算地震灾民数据集上的创伤后应激障碍(PTSD)症状。我们对网络模型和可预测性进行可视化,并讨论如何将网络模型和节点的可预测性相结合来设计症状网络的有效干预措施。


载入资料

我们加载提供的数据:




data <- as.matrix(data)
p <- ncol(data)
dim(data)## [1] 312  17

数据集包含对344人的17种PTSD症状的完整反应。症状强度的答案类别范围从1“没有”到5“非常强”。


估计网络模型

我们估计了混合图形模型,其中我们将所有变量都视为连续高斯变量。因此,我们将所有变量的类型设置为,type = 'g'并将每个变量的类别数设置为1:





fit_obj <- (data = data,
type = rep('g', p),
level = rep(1, p),
lambdaSel = 'CV',
ruleReg = 'OR',
pbar = FALSE)

计算节点的可预测性

估计网络模型后,我们准备计算每个节点的可预测性。由于可以通过依次获取每个节点并对其上的所有其他节点进行回归来估计该图,因此可以轻松地计算节点的可预测性)。作为可预测性的度量,我们选择解释的方差的比例:0表示当前节点根本没有被节点中的其他节点解释,1表示完美的预测。我们在估算之前将所有变量中心化,以消除截距的影响。

有关如何计算预测和选择可预测性度量的详细说明,请查看本文。如果网络中还有其他变量类型(例如分类),我们可以为这些变量选择适当的度量。

pred_obj <- predict(object = fit_obj,
data = data


pred_obj$error
##     Variable    R2
## 1  intrusion 0.639
## 2     dreams 0.661
## 3      flash 0.601
## 4      upset 0.636
## 5    physior 0.627
## 6    avoidth 0.686
## 7   avoidact 0.681
## 8    amnesia 0.410
## 9    lossint 0.520
## 10   distant 0.498
## 11      numb 0.451
## 12    future 0.540
## 13     sleep 0.565
## 14     anger 0.562
## 15    concen 0.638
## 16     hyper 0.676
## 17   startle 0.626

我们计算了网络中每个节点的解释方差(R2)的百分比。接下来,我们将估计的网络可视化,并讨论与解释方差有关的结构。


可视化网络和可预测性

我们根据估计的加权邻接矩阵和节点的可预测性度量作为参数,进行网络可视化:





graph(fit_obj$pairwise$wadj, # 加权邻接矩阵作为输入
layout = 'spring',
pie = pred_obj$error[,2], # 误差作为饼图的输入

相关文章
|
2月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
52 2
|
2月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
61 1
|
2月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
11天前
|
算法 安全 网络安全
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
209 17
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
161 10
|
9月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
173 10
|
9月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
9月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。

热门文章

最新文章