R语言网络和网络流的可视化实践:通勤者流动网络

简介: R语言网络和网络流的可视化实践:通勤者流动网络

在现实世界中,我们的生活受到大量网络的支配。网络流可以表示很多模型,比如管道中的石油、高压线中电流,或者计算机网络中的数据。网络流也可以解决很多问题,比如如何进行道路交通管控,以便有效地缓解早高峰的拥堵;在物流网运输中,在满足供需关系的同时,怎样使渠道成本最低。这些问题都有现成的网络流算法,别再以为网络流仅仅是网络中的比特流。

对于网络和网络流的实践,我们将使用R。



myflows <- flows(mat = nav, i = "i", j = "j",
diag(myflows) <- 0

选择流量至少要占每个市区流出流量总和的20%。


flows(myflows/rowSums(myflows)*100

然后选择 主要流量 (流入流量标准)

flowSel2 <- domflows(mat = myflows, w = colSums(m
flowSel <- myflows * flowSel1 * flowSel2
data.frame(id = colnames(myflows),

最后绘制主导流图



opar <- par(mar = c(0,0,2,0))


pltFlows(mat = flowSel,  spdfid = "ID", w = inflows, wid = "id",wvar = "w", wcex = 0.05, add = TRUE,legend.flows.pos = "topright",legend.flows.title =
title("通勤者的主要流动")

获取背景图的代码基于该包中定义的 GE对象。

要进一步了解主流流量,请阅读  Nystuen&Dacey(1961)

 


相关文章
|
1月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
62 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
1月前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
53 0
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
12天前
|
数据采集 网络协议 算法
移动端弱网优化专题(十四):携程APP移动网络优化实践(弱网识别篇)
本文从方案设计、代码开发到技术落地,详尽的分享了携程在移动端弱网识别方面的实践经验,如果你也有类似需求,这篇文章会是一个不错的实操指南。
32 1
|
18天前
|
数据采集 存储 XML
Python实现网络爬虫自动化:从基础到实践
本文将介绍如何使用Python编写网络爬虫,从最基础的请求与解析,到自动化爬取并处理复杂数据。我们将通过实例展示如何抓取网页内容、解析数据、处理图片文件等常用爬虫任务。
109 1
|
1月前
|
弹性计算 人工智能 运维
Terraform从入门到实践:快速构建你的第一张业务网络(上)
本次分享主题为《Terraform从入门到实践:快速构建你的第一张业务网络》。首先介绍如何入门和实践Terraform,随后演示如何使用Terraform快速构建业务网络。内容涵盖云上运维挑战及IaC解决方案,并重磅发布Terraform Explorer产品,旨在降低使用门槛并提升用户体验。此外,还将分享Terraform在实际生产中的最佳实践,帮助解决云上运维难题。
125 1
Terraform从入门到实践:快速构建你的第一张业务网络(上)
|
1月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
87 1
|
1月前
|
监控 安全 网络安全
云计算与网络安全:探索云服务中的信息安全实践
【9月更文挑战第36天】在数字化转型的浪潮中,云计算已成为企业IT架构的核心。然而,随着其应用的广泛性,网络安全问题也日益凸显。本文将深入探讨云计算环境中的网络安全挑战,并提出相应的安全策略和技术解决方案。我们将从云服务的基本原理出发,分析常见的网络威胁,并介绍如何通过加密、访问控制和安全监控等手段来保护云环境。文章旨在为读者提供一套实用的云安全指南,帮助他们在享受云计算带来的便利的同时,确保数据的安全和隐私。
56 16
|
1月前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
76 4
|
15天前
|
边缘计算 5G 数据处理
5G网络能耗管理:绿色通信的实践
【10月更文挑战第30天】
34 0

热门文章

最新文章

下一篇
无影云桌面