leetcode1237. 找出给定方程的正整数解

简介: leetcode1237. 找出给定方程的正整数解

难度中等    101

给你一个函数  f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) == z 所有可能的正整数 数对 xy。满足条件的结果数对可以按任意顺序返回。

尽管函数的具体式子未知,但它是单调递增函数,也就是说:

  • f(x, y) < f(x + 1, y)
  • f(x, y) < f(x, y + 1)

函数接口定义如下:

interface CustomFunction {

public:

 // Returns some positive integer f(x, y) for two positive integers x and y based on a formula.

 int f(int x, int y);

};

你的解决方案将按如下规则进行评判:

  • 判题程序有一个由 CustomFunction9 种实现组成的列表,以及一种为特定的 z 生成所有有效数对的答案的方法。
  • 判题程序接受两个输入:function_id(决定使用哪种实现测试你的代码)以及目标结果 z
  • 判题程序将会调用你实现的 findSolution 并将你的结果与答案进行比较。
  • 如果你的结果与答案相符,那么解决方案将被视作正确答案,即 Accepted

示例 1:

输入:function_id = 1, z = 5

输出:[[1,4],[2,3],[3,2],[4,1]]

解释:function_id = 1 暗含的函数式子为 f(x, y) = x + y

以下 x 和 y 满足 f(x, y) 等于 5:

x=1, y=4 -> f(1, 4) = 1 + 4 = 5

x=2, y=3 -> f(2, 3) = 2 + 3 = 5

x=3, y=2 -> f(3, 2) = 3 + 2 = 5

x=4, y=1 -> f(4, 1) = 4 + 1 = 5


示例 2:

输入:function_id = 2, z = 5

输出:[[1,5],[5,1]]

解释:function_id = 2 暗含的函数式子为 f(x, y) = x * y

以下 x 和 y 满足 f(x, y) 等于 5:

x=1, y=5 -> f(1, 5) = 1 * 5 = 5

x=5, y=1 -> f(5, 1) = 5 * 1 = 5

提示:

  • 1 <= function_id <= 9
  • 1 <= z <= 100
  • 题目保证 f(x, y) == z 的解处于 1 <= x, y <= 1000 的范围内。
  • 1 <= x, y <= 1000 的前提下,题目保证 f(x, y) 是一个 32 位有符号整数。
/*
 * // This is the custom function interface.
 * // You should not implement it, or speculate about its implementation
 * class CustomFunction {
 * public:
 *     // Returns f(x, y) for any given positive integers x and y.
 *     // Note that f(x, y) is increasing with respect to both x and y.
 *     // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
 *     int f(int x, int y);
 * };
 */
class Solution {
public:
    vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {
        
    }
};

遍历法:

class Solution {
public:
    vector<vector<int>> findSolution(CustomFunction& customfunction, int z) {
        vector<vector<int>> res;
        for (int x = 1; x <= 1000; x++) {
            for (int y = 1; y <= 1000; y++) {
                if (customfunction.f(x, y) == z) {
                    res.push_back({x, y});
                }
            }
        }
        return res;
    }
};

这段代码是一个解决问题的解法,它通过遍历x和y的取值范围从1到1000,并调用`customfunction.f(x, y)`方法进行计算,判断计算结果是否等于目标值z。如果相等,将当前的x和y加入到结果集res中。

整个算法的时间复杂度为O(n^2),其中n为1000。因为有两个嵌套的循环,每个循环都需要执行1000次,所以总共需要执行1000 * 1000 = 1000000次。

这个解法适用于求解自定义函数的问题,通过遍历所有可能的参数组合来查找满足特定条件的解。在这个例子中,我们通过遍历x和y的取值范围来寻找使得customfunction.f(x, y)等于目标值z的参数组合。

最后,将找到的参数组合存储在结果集res中,并返回res作为最终的解答。

根据题目描述,我们需要通过调用CustomFunction接口中的方法来找到满足条件f(x, y) == z的所有正整数数对xy

我们可以利用函数单调递增的性质进行搜索。从左下角开始,设初始位置为(x, y) = (1, 1000),然后按照以下规则进行搜索:

  • 如果f(x, y) > z,则y减小1;
  • 如果f(x, y) < z,则x增加1;
  • 如果f(x, y) == z,则找到一个解,将(x, y)加入结果集。

重复上述步骤直到xy超出范围。最后返回结果集即可。

目录
相关文章
|
1月前
|
存储
LeetCode整数反转
解决LeetCode上的整数反转问题的几种方法,包括错误的方法和优化后的解决方案,以及如何避免反转后的整数超出32位有符号整数范围的问题。
35 1
|
3月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
113 2
|
1月前
【LeetCode】整数翻转
【LeetCode】整数翻转
15 1
|
1月前
|
存储 C++
Leetcode第十二题(整数转罗马数字)
LeetCode第12题“整数转罗马数字”的解题方法,包括罗马数字的基本规则和特殊规则,以及如何使用C++实现整数到罗马数字的转换。
15 0
|
1月前
|
C++
Leetcode第十三题(罗马数字转整数)
这篇文章介绍了LeetCode第13题“罗马数字转整数”的解题方法,通过一个C++的类`Solution`中的`romanToInt`函数来实现,该函数使用哈希表和遍历字符串的方法,根据罗马数字的规则将输入的罗马数字字符串转换为对应的整数值。
47 0
|
1月前
|
算法 C++
Leetcode第八题(字符串转换整数(atoi))
这篇文章介绍了LeetCode上第8题“字符串转换整数(atoi)”的解题思路和C++的实现方法,包括处理前导空格、正负号、连续数字字符以及整数溢出的情况。
17 0
|
3月前
|
算法
LeetCode第12题目整数转罗马数字
该文章介绍了 LeetCode 第 12 题整数转罗马数字的解法,通过使用 TreeMap 按照整数从大到小排序,先使用大的罗马数字表示整数,再用小的,核心是先表示完大的罗马数字,想通此点该题较简单。
LeetCode第12题目整数转罗马数字
|
3月前
|
算法
LeetCode第8题字符串转换整数 (atoi)
该文章介绍了 LeetCode 第 8 题字符串转换整数 (atoi)的解法,需要对字符串进行格式解析与校验,去除前导空格和处理正负号,通过从高位到低位的计算方式将字符串转换为整数,并处理越界情况。同时总结了这几道题都需要对数字的表示有理解。
LeetCode第8题字符串转换整数 (atoi)
|
3月前
|
算法
LeetCode第7题整数反转
该文章介绍了 LeetCode 第 7 题整数反转的解法,通过除 10 取模和乘 10 累加的方式实现整数反转,同时注意边界情况的判断,并总结了通过举例推算发现规律的解题思路。
LeetCode第7题整数反转
|
3月前
|
算法
LeetCode第13题目罗马数字转整数
该文章介绍了 LeetCode 第 13 题罗马数字转整数的解法,通过从大到小解析罗马数字,根据罗马数字的特点,按照从大到小的顺序匹配罗马数字和整数的关系,从而解决该问题,同时强调要注意观察题目考查的知识点特征。