CentOS部署Apache Superset大数据可视化BI分析工具并实现无公网IP远程访问

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
.cn 域名,1个 12个月
简介: CentOS部署Apache Superset大数据可视化BI分析工具并实现无公网IP远程访问

前言

Superset是一款由中国知名科技公司开源的“现代化的企业级BI(商业智能)Web应用程序”,其通过创建和分享dashboard,为数据分析提供了轻量级的数据查询和可视化方案。Superset在数据处理和可视化方面具有强大的功能,能够满足企业级的数据分析需求,并为用户提供直观、灵活的数据探索和展示方式。通过Superset,用户可以轻松地从海量数据中提取有价值的信息,帮助企业做出更加明智的决策。另外,团队协作进行数据分析,可以结合国内流行的内网穿透工具实现公网的实时远程访问数据。

1. 使用Docker部署Apache Superset

使用Docker compose在docker中部署Apache Superset

说明:部署步骤按照superset官网说明

1.1 第一步安装docker 、docker compose

这里选择手动下载rpm包,然后yum install *.rpm方式来安装。

下载地址:https://download.docker.com/linux/centos/7/x86_64/stable/Packages/


说明:请选择自己对应的系统-可参考这个网页https://docs.docker.com/engine/install/


下载rpm包如下:

containerd.io-1.6.18-3.1.el7.x86_64.rpm


docker-ce-cli-23.0.1-1.el7.x86_64.rpm


docker-scan-plugin-0.23.0-1.el7.x86_64.rpm


docker-buildx-plugin-0.10.2-1.el7.x86_64.rpm


docker -ce-rootless-extras-23.0.1-1.el7.x86_64.rpm


docker-ce-23.0.1-1.el7.x86_64.rpm


docker-compose-plugin-2.16.0-1.el7.x86_64.rpm


将这些包手动上传至centos系统,例如:

我将这些包上传至/opt/dockerpackage目录

随后执行 yum install /opt/dockerpackage/*.rpm 即可。

此时,安装docker与docker compose完成。

注意:你这台电脑最好有网,应该会有些依赖项需要安装。

这里列出这些依赖项,如果你没网,那几麻烦了,要自己去找对应版本下载。
 audit-libs-python            x86_64    2.8.5-4.el7                   base                                               76 k
 checkpolicy                  x86_64    2.5-8.el7                     base                                              295 k
 container-selinux            noarch    2:2.119.2-1.911c772.el7_8     extras                                             40 k
 fuse-overlayfs               x86_64    0.7.2-6.el7_8                 extras                                             54 k
 fuse3-libs                   x86_64    3.6.1-4.el7                   extras                                             82 k
 libcgroup                    x86_64    0.41-21.el7                   base                                               66 k
 libsemanage-python           x86_64    2.5-14.el7                    base                                              113 k
 policycoreutils-python       x86_64    2.5-34.el7                    base                                              457 k
 python-IPy                   noarch    0.75-6.el7                    base                                               32 k
 setools-libs                 x86_64    3.3.8-4.el7                   base                                              620 k
 slirp4netns                  x86_64    0.4.3-4.el7_8                 extras                                             81 k

这里验证docker是否安装好

启动docker: sudo systemctl start docker

pull一个hello world 执行看看:sudo docker run hello-world

看到 Hello from Docker就表示可以了。


注意:这里hello-world镜像会从仓库pull,如果没网,需要自己去dockerhub下载这个镜像。


1.2 克隆superset代码到本地并使用docker compose启动

这里不用git clone命令,直接下载zip包再解压即可

浏览器打开https://github.com/apache/superset网页,Dowanload ZIP 即可。


将下载的ZIP包(superset-master.zip)上传至/opt/superset目录,需要自己创建。

使用unzip superset-master.zip 解压后得到superset-master文件夹


随后cd superset-master- 如果要修改默认的用户名密码,请先看第3步,而后再继续。

执行docker compose -f docker-compose-non-dev.yml pull

这个过程会需要几分钟


上一步完成后,执行docker compose -f docker-compose-non-dev.yml up

等到控制台输出变慢后 就完成了。


此时打开浏览器 输入:http://IP:8088/或localhost:8088登录即可。

默认用户名密码是admin


进入到Superset登录界面

2. 安装cpolar内网穿透,实现公网访问

这里我们用cpolar内网穿透工具,它支持http/https/tcp协议,不需要公网IP,不需要设置路由器,使用不限制流量。

登录cpolar官网:https://www.cpolar.com

在cpolar的下载页面中,找到对应版本的cpolar安装程序,笔者使用的是Windows操作系统,因此选择Windows版下载。

下载完成后,将下载的文件解压,并双击其中的.msi文件,就能自动执行cpolar的安装程序,我们只要一路Next,就能完成安装。

由于cpolar会为每个用户创建独立的数据隧道,并辅以用户密码和token码保证数据安全,因此我们在使用cpolar之前,需要进行用户注册。注册过程也非常简单,只要在cpolar主页右上角点击用户注册,在注册页面填入必要信息,就能完成注册。

注册完后,登录cpolar的客户端,(可以在浏览器中输入localhost:8088直接访问,也可以在开始菜单中点击cpolar客户端的快捷方式),点击客户端主界面左侧隧道管理——创建隧道按钮,进入本地隧道创建页面

  1. 隧道名称:可以看做cpolar本地的隧道信息注释,只要方便我们分辨即可
  2. 协议:选择http协议
  3. 本地地址:本地地址即为本地网站的输出端口号,内网默认端口为192.168.50.170:88,这里填入192.168.50.170:88

注意:如果正常输入8080端口,网页出现400情况,需要把前面IP完整填写到本地地址和点击 高级——Host头域

  1. 域名类型:如果打算创建临时数据隧道,则直接勾选“随机域名”,由cpolar客户端自行生成网络地址
  2. 地区:与cpolar云端预留的信息一样,我们依照实际使用地填写即可

完成这些设置后,就可以点击下方按钮。

数据隧道创建完成后,cpolar会自动跳转至隧道管理——隧道列表页面。在这个页面,我们可以对这条数据隧道进行管理,包括开启、关闭或删除这条隧道,也可以点击编辑按钮,对这条数据隧道的信息进行修改。

superset数据隧道入口(公共互联网访问地址),则可以在状态——在线隧道列表中找到。

复制两个隧道的任意一个公网地址,粘贴到公网浏览器中。

粘贴公网地址到浏览器后,显示公网访问公司的内网superset登录界面,登录后实现公网访问内网。

3. 设置固定连接公网地址

由于以上使用cpolar所创建的隧道使用的是随机公网地址,24小时内会随机变化,不利于长期远程访问。因此我们可以为其配置二级子域名,该地址为固定地址,不会随机变化【ps:cpolar.cn已备案】


注意需要将cpolar套餐升级至基础套餐或以上,且每个套餐对应的带宽不一样。【cpolar.cn已备案】

登录cpolar官网,点击左侧的预留,选择保留二级子域名,设置一个二级子域名名称,点击保留,保留成功后复制保留的二级子域名名称。

保留成功后复制保留成功的二级子域名的名称

返回登录cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道,点击右侧的编辑

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名
  • Sub Domain:填写保留成功的二级子域名

点击更新(注意,点击一次更新即可,不需要重复提交)

更新完成后,打开在线隧道列表,此时可以看到公网地址已经发生变化,地址名称也变成了固定的二级子域名名称的域名

最后,我们使用固定的公网地址访问superset,(两个地址复制哪一个都可以)可以看到访问成功,这样一个固定且永久不变的公网地址就设置好了,在外面就可以通过外网地址访问superset大数据系统了,随时随地查看数据!

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
28天前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
99 4
|
1月前
|
Linux 网络安全 Apache
CentOS 7.2配置Apache服务httpd(上)
CentOS 7.2配置Apache服务httpd(上)
208 1
|
3月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute 生态系统中的数据集成工具
【8月更文第31天】在大数据时代,数据集成对于构建高效的数据处理流水线至关重要。阿里云的 MaxCompute 是一个用于处理大规模数据集的服务平台,它提供了强大的计算能力和丰富的生态系统工具来帮助用户管理和处理数据。本文将详细介绍如何使用 DataWorks 这样的工具将 MaxCompute 整合到整个数据处理流程中,以便更有效地管理数据生命周期。
124 0
|
18天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
19天前
|
分布式计算 大数据 BI
ClickHouse与大数据生态整合:从ETL到BI报表
【10月更文挑战第27天】在这个数据驱动的时代,企业越来越依赖于数据来做出关键决策。而高效的数据处理和分析能力则是支撑这一需求的基础。作为一位数据工程师,我有幸参与到一个项目中,该项目旨在利用ClickHouse与Hadoop、Spark、Flink等大数据处理框架的整合,构建一个从数据提取(Extract)、转换(Transform)、加载(Load)到最终生成商业智能(BI)报表的全流程解决方案。以下是我在这个项目中的经验和思考。
33 1
|
1月前
|
存储 分布式计算 大数据
大数据的工具都有哪些?
【10月更文挑战第9天】大数据的工具都有哪些?
64 1
|
1月前
|
Linux PHP Apache
CentOS 7.2配置Apache服务httpd(下)
CentOS 7.2配置Apache服务httpd(下)
48 1
|
2月前
|
存储 分布式计算 Hadoop
大数据分析的工具
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。
43 8
|
1月前
|
分布式计算 Hadoop 数据挖掘
6个常用大数据分析工具集锦
6个常用大数据分析工具集锦
51 0
|
2月前
|
分布式计算 Hadoop 大数据
28个大数据的高级工具汇总
文章汇总了28种大数据高级工具,并对Hadoop、Spark、Storm等关键技术进行了详细介绍,同时还提供了获取大数据集的多个资源链接。
71 0