计算机网络——运输层(1)暨小程送书

简介: 计算机网络——运输层(1)暨小程送书

运输层(1)

概述

计算机网络的运输层是位于应用层和网络层之间的一层,它负责在网络中的不同主机之间提供端到端的数据传输服务。运输层的主要功能包括数据分段、传输控制、错误检测和纠正等。


两个主要协议

  • 传输控制协议:TCP提供可靠的数据传输服务,它通过数据分段、流量控制、拥塞控制等机制来确保数据的可靠传输。
  • 用户数据报协议:UDP则提供不可靠的数据传输服务,它主要用于一些对数据传输延迟要求较低的应用,如音视频传输等。

运输层和网络层的关系

运输层和网络层是计算机网络中的两个重要组成部分,它们之间有着密切的关系。

网络层

负责在网络中的不同主机之间提供数据包的传输和路由选择,它使用IP协议来实现主机之间的通信。网络层的主要功能是将数据包从源主机传输到目标主机,它负责确定数据包的路径和转发。

运输层

负责在不同主机之间提供端到端的数据传输服务,它使用TCP或UDP协议来实现数据的可靠传输。运输层的主要功能是对数据进行分段、传输控制、错误检测和纠正等,以确保数据在端到端之间的可靠传输。

总结

网络层提供了数据包的传输和路由功能,而运输层则在此基础上提供了端到端的数据传输服务。两者之间的关系可以理解为网络层提供了基础的数据传输能力,而运输层在此基础上增加了更高层次的数据传输服务,使得应用层能够更加方便地进行数据通信。

多路复用与多路分解

多路复用和多路分解是两种重要的数据传输技术,它们允许在单个通信信道上同时传输多个数据流。

多路复用

将多个数据流合并成一个数据流进行传输的过程。在发送端,多路复用将来自不同源的数据流合并成一个数据流,然后通过网络传输到接收端。在接收端

多路分解

将接收到的数据流分解成原始的多个数据流,并交付给相应的目标。

不同的技术实现

时分复用(TDM)

在时分复用中,不同的数据流按照时间片的方式依次传输,每个数据流被分配一个固定的时间段进行传输。接收端根据时间信息来分解数据流。


频分复用(FDM)

在频分复用中,不同的数据流通过在不同的频率范围内传输,每个数据流占据不同的频率带宽。接收端根据频率信息来分解数据流。


码分复用(CDM)

在码分复用中,不同的数据流使用不同的编码方式进行传输,接收端根据编码信息来分解数据流。


总结

多路复用和多路分解技术可以提高通信信道的利用率,允许多个数据流通过同一信道进行传输,从而减少了通信资源的浪费。这些技术在计算机网络中得到了广泛的应用,例如在电话网络、无线通信网络以及互联网传输中都有多路复用和多路分解的应用。

UDP——无连接运输

UDP是计算机网络中的一种无连接的运输层协议。与TCP协议不同,UDP协议不需要在发送数据之前建立连接,也不需要在数据传输后拆除连接。

特点&功能

无连接

UDP协议是无连接的,发送端在发送数据之前不需要与接收端建立连接,也不需要维护连接状态。这使得UDP协议的数据传输速度更快,但也意味着它不提供数据的可靠性保证。


面向数据报

UDP协议是面向数据报的,每个UDP数据包都是独立的,没有先后顺序的要求。这意味着UDP数据包之间的传输没有关联,每个数据包都是独立处理的。


不可靠性

UDP协议不提供数据的可靠传输保证,它不保证数据包的顺序到达、不保证数据的完整性,也不提供重传机制。因此,UDP协议在传输过程中可能会出现丢包、重复、乱序等问题。


低开销

相比于TCP协议,UDP协议的开销更低,不需要维护连接状态、不需要进行拥塞控制和流量控制,因此在一些对传输速度要求较高的应用场景下更为适用。

总结

UDP协议通常用于那些对数据传输时延要求较高,但对数据可靠性要求较低的应用场景,例如音视频流媒体传输、在线游戏数据传输等。由于UDP协议的特点,它能够提供更快的数据传输速度和更低的传输开销,但在传输过程中可能会出现数据丢失或乱序的情况。因此,在选择使用UDP协议时,需要根据具体的应用场景和需求来权衡其优劣。


可靠数据传输原理

可靠数据传输是指在计算机网络中,确保数据在传输过程中不会丢失、损坏或重复,并且能够按照正确的顺序到达目的地的过程。

机制

  1. 确认和重传机制:发送方在发送数据后等待接收方的确认消息,如果一定时间内没有收到确认消息,发送方会重新发送数据。这样可以确保数据的可靠传输。
  2. 序列号和校验和:在发送数据时,每个数据包都会被赋予一个唯一的序列号,接收方可以根据序列号来检查数据包的顺序是否正确。同时,每个数据包都会附带一个校验和,接收方可以通过校验和来检查数据包是否损坏。
  3. 流量控制和拥塞控制:流量控制用于控制发送方发送数据的速率,以确保接收方能够处理数据。拥塞控制用于避免网络拥塞,通过动态调整发送方的发送速率来保证网络的稳定性。
  4. 超时重传:发送方在发送数据后会设置一个超时时间,如果在超时时间内没有收到确认消息,发送方会重新发送数据。
  5. 确认机制:接收方在接收到数据后会发送确认消息给发送方,以确保发送方知道数据已经成功到达。

TCP——面向连接的传输

TCP是一种面向连接的、可靠的传输层协议,与UDP协议不同,TCP协议是面向连接的,它在数据传输之前需要先建立连接,在数据传输完成后需要拆除连接。然而,您提到的“TCP无连接运输”似乎存在一些混淆,因为TCP协议本身并不支持无连接的传输。


特点&功能

面向连接

TCP协议是面向连接的,数据传输之前需要通过三次握手建立连接,传输完成后需要通过四次挥手拆除连接。这种面向连接的特性保证了数据的可靠传输和顺序传输。


可靠性

TCP协议提供了数据的可靠传输保证,它通过序号、确认应答、重传机制等手段来保证数据的可靠性。TCP协议能够保证数据包的顺序到达、不丢失、不重复,并且提供流量控制和拥塞控制机制。


高开销

相比于UDP协议,TCP协议的开销更高,因为它需要维护连接状态、进行拥塞控制和流量控制,这些都会增加传输的开销。


总结

TCP协议的面向连接和可靠性特性,它通常用于那些对数据传输可靠性要求较高的应用场景,例如文件传输、网页浏览、电子邮件传输等。在这些应用场景中,数据的完整性和顺序性非常重要,因此使用TCP协议能够保证数据的可靠传输。然而,由于TCP协议的连接管理和数据校验等机制,会增加一定的传输开销,因此在对传输速度要求较高的应用场景中,可能会选择使用UDP协议来获得更快的传输速度。

小程送书

《巧用ChatGPT高效搞定Excel数据分析》

内容简介

本书以Excel 2021办公软件为操作平台,创新地借助当下最热门的AI工具——ChatGPT,来学习Excel数据处理与数据分析的相关方法、技巧及实战应用,同时也向读者分享在ChatGPT的帮助下进行数据分析的思路和经验。


《巧用ChatGPT轻松玩转新媒体运营》

内容简介

AI赋能运营全流程实操:文案写作+图片制作+社交媒体运营+爆款视频文案+私域推广+广告策划+电商平台高效运营。AI运营技巧大全+痛点解析,全面提高效率,让你弯道超车、轻松攀登运营之巅。


参与方式

点赞+收藏+任意评论(评论最多三次)


相关文章
|
网络协议 网络性能优化
【计算机网络】第3章 运输层(上)
【计算机网络】第3章 运输层
|
5月前
|
网络协议 算法 网络性能优化
计算机网络学习记录 运输层 Day5(1)
计算机网络学习记录 运输层 Day5(1)
33 0
|
6月前
|
缓存 网络协议 算法
计算机网络 第四章 运输层(习题)
计算机网络 第四章 运输层(习题)
|
11月前
|
缓存 网络协议 算法
计算机网络 | 运输层知识点汇总-2
计算机网络 | 运输层知识点汇总
90 0
|
11月前
|
缓存 网络协议 算法
计算机网络 | 运输层知识点汇总-1
计算机网络 | 运输层知识点汇总
92 0
|
存储 缓存 网络协议
计算机网络-运输层
运输层概述 这里我们对运输层进行概述,之前文章所介绍的计算机网络体系结构中的物理层,数据链路层以及网络层,他们共同解决了将主机通过异构网络互联起来所面临的问题,实现了主机到主机的通信, 如图所示,局域网1上的主机与局域网2上的主机,通过互联的广域网进行通信,网络层的作用范围是主机到主机,但实际上在计算机网络中进行通信的真正实体是位于通信两端主机中的进程。 Ap是应用进程的英文缩写词,如何为运行在不同主机上的应用进程提供直接的通信服务,是运输层的任务,运输层协议又称为端到端协议,如图所示运输层的作用范围是应用进程到应用进程,也称为端到端。 接下来我们从计算机网络体系结构的角度来看运输层。
47 0
|
缓存 网络协议 算法
【计算机网络】应用层和运输层网络协议分析
【计算机网络】应用层和运输层网络协议分析
|
缓存 网络协议 算法
【计算机网络】第3章 运输层(下)
【计算机网络】第3章 运输层
|
网络协议 网络性能优化
第五章 运输层【计算机网络】4
第五章 运输层【计算机网络】4
51 0
|
7天前
|
存储 缓存 网络协议
计算机网络常见面试题(二):浏览器中输入URL返回页面过程、HTTP协议特点,GET、POST的区别,Cookie与Session
计算机网络常见面试题(二):浏览器中输入URL返回页面过程、HTTP协议特点、状态码、报文格式,GET、POST的区别,DNS的解析过程、数字证书、Cookie与Session,对称加密和非对称加密
下一篇
无影云桌面