yolov7论文学习——创新点解析、网络结构图

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: yolov7论文学习——创新点解析、网络结构图

创新点

1、提出了E-ELAN,但是只在yolov7-e6e中使用到。
2、yolov7基于拼接模型的缩放方法,在yolov7x中使用到。
3、将重参数化卷积应用到残差模块中或者用到基于拼接的模块中去。RepConvN
4、提出了两种新的标签分配方法

一、ELAN和E-ELAN

1、 ELAN

yolov7使用大量的ELAN作为基础模块。 这么多堆叠其实对应了更密集的残差结构,残差网络的特点是容易优化,并且能够通过增加相当的深度来提高准确率。内部的残差块使用了跳跃连接,缓解了在深度神经网络中增加深度带来的梯度消失问题

[-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11

2、E-ELAN

2分组的卷积,本质上就是ELAN的拓展 。只在yolov7-e6e中提到,是将yolov7-e6中的ELAN并行处理后得到的。

二、模型缩放

设计了同时改变深度和宽度的模型缩放方法,yolov7x是对yolov7进行了缩放。

增加了两个卷积层,增加了深度,并且输入数量,拼接后输出数量,以及卷积层输出的通道数量都是原来的1.25倍,从这个角度考虑增加了宽度。

三、重参数化卷积的改进 RepConvN

1、RepConv

重参数化卷积,使用3个不同的卷积层训练完成后,进行合并。重参数化卷积虽然在VGG上取得较好的成果,但是在残差网络中并没有取得很好的成果 。

2、RepConvN

而RepConvN是在重参数化卷积的基础上去掉了恒等连接。将重参数化卷积应用到残差模块或者用到基于拼接的模块中去。但是在代码中使用了最简单的重参数化卷积,并没有使用提出的这个结论。

思想取自于RepVGG,基本思想是在训练的时候引入特殊的残差结构辅助训练,这个残差结构是经过独特设计的,在实际预测的时候,可以将复杂的残差结构等效于一个普通的3*3卷积,这个时候网络的复杂度下降,但是网络的预测性能却没有下降。

为什么要去掉恒等连接?

因为残差网络本身存在恒等连接,而原本的重参数化卷积RepConv也有恒等连接,两者之间起了冲突,所以要去掉原本重参数化卷积RepConv中的恒等连接,成为RepConvN。

四、软标签和硬标签

硬标签是yolov5所采用的方式,将目标值和预测值一起计算损失值;软标签是yolov7所使用的方式,将目标值通过分配器得到新的目标值,再和预测值一起计算损失值。

五、两种新的标签分配方法

粗粒度和细粒度。粗标签是5个网格,细标签是3个网格。

相关文章
|
27天前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
57 3
|
1月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
33 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
1月前
|
机器学习/深度学习 编解码 算法
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
58 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
|
21天前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
21天前
|
安全 网络协议 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-1):主动信息收集之ping、Nmap 就怕你学成黑客啦!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-1):主动信息收集之ping、Nmap 就怕你学成黑客啦!
|
21天前
|
网络协议 安全 NoSQL
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
|
21天前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
26天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
1月前
|
存储 安全 网络安全
浅谈网络安全的认识与学习规划
浅谈网络安全的认识与学习规划
31 6
|
1月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
47 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》

推荐镜像

更多