数据之势丨云原生数据库,走向Serverless与AI驱动的一站式数据平台

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
简介: 在大模型席卷之下,历史的齿轮仍在转动,很多人开始思考,大模型能为数据库带来哪些改变。阿里云数据库产品事业部负责人李飞飞表示,数据库和智能化的结合是未来非常重要的发展方向,数据库的使用门槛将大幅降低。

官网banner.png
《云栖战略参考》由阿里云与钛媒体联合策划,呈现云计算与人工智能领域的最新技术战略观点与业务实践探索,希望这些内容能让您有所启发。

2005年,商业数据库时代启幕,至2009年起开源数据库潮流涌动,阿里巴巴率先提出“去IOE”,用分布式架构替代传统商业数据库。2017年,阿里云自研了第一款云原生数据库PolarDB。从AliSQL到RDS,再到自研PolarDB,阿里云瑶池数据库的演进历程犹如一面镜子,折射出了国产数据库的创新与发展。

当下,AI驱动下的数据平台,正在向一站式、智能化的方向演进。作为AIGC应用的基础设施,以PolarDB、AnalyticDB、Lindorm、RDS为核心的阿里云瑶池数据库现已全面拥抱向量检索能力,并与通义千问等大模型深度集成,为用户提供智能化的一站式数据管理平台,加速业务数智创新。

随着云原生+Serverless的不断深入,一站式数据平台将让数据管理开发像“搭积木”一样简单实用,以性价比更高、体验更优的云数据库服务,助推用户业务提效增速。

云原生+Serverless,让数据平台像搭积木一样简单好用

在信息管理模型(DIKW)中,人类的认知分为四个层次:数据、信息、知识和智慧,而数据平台所承载的就是其中最核心的部分——数据,并内置算力与模型。如今,数据平台已成为AI时代的基础底座,它能够理解数据内容、理清用户意图、整合数据资源、保护数据安全和隐私,同时在加速迈向“云原生化、平台化、一体化和智能化”(简称“四化”),让算力服务触手可及。

通过“云原生+Serverless”应用,阿里云瑶池数据库不断深化,正推动数据平台像“搭积木”一样便捷轻巧,提供秒级弹性、开箱即用免运维等服务。用户可以更专注于核心业务,只需按效果和价值付费。如拼乐高一样,根据工作负载调用不同数据库引擎,甚至在一个数据库引擎内调用不同计算能力,实现对当前工作负载Dynamic Workload最佳匹配的平台能力。以数据库为例,云原生数据库1.0时代,呈现阶梯式的匹配曲线;当进入了真正的云原生数据库时代,数据库则可以完美匹配业务负载波峰波谷的变化。

目前,阿里云瑶池旗下的核心产品均已陆续推出Serverless形态,包括云原生数据库PolarDB、云原生数据仓库AnalyticDB、云原生多模数据库Lindorm、云数据库RDS等,并完成了全面升级:弹得更快,实现秒级探测、秒级切换;弹得更稳,实现全场景覆盖,智能无感秒级弹性;弹得更广,实现秒级弹升0~3000核;弹得更细,实现三层解耦独立弹升。对比传统架构,Serverless形态可降低60%成本。

此外,通过计算资源的一体化调度与管理、混部资源利用率提升、异构架构一体化适配(X86和ARM)、安全容器增强等技术创新,瑶池数据库竞争力全面升级,实现更高程度的性价比优势。其中,核心产品(PolarDB、AnalyticDB、RDS)发布基于倚天ARM的经济版,诠释极致性价比。对比开源自建数据库,经济版价格比自建低30%,同时性能比自建高10%。

以PolarDB为核心,一体化加速云上数智创新

当前的时代,就像一百多年前尼古拉·特斯拉刚刚发明了交流电一样,不仅需要研究发电机和电动机,更需要研究电本身、电的变压原理、电的传输......而数据库是对数据的赋能,研究数据、让算力技术大众化、普世化则是实现数据赋能的途径。

过去一年多,阿里云在“一体化”、“一站式”的推动上,不遗余力。数据库历经了50多年的发展,诞生了不同的子方向,例如联机在线交易OLTP、联机在线分析OLAP、非关系型数据库NoSQL等。阿里云的“一站式”就是在这些边界点上进行突破,瑶池数据库提供了全面的HTAP能力。

轻量级HTAP,基于自研IMCI技术,云原生数据库PolarDB100%兼容MySQL语法,可支持大数据量、毫秒级延迟的数据分析需求。对比传统MySQL行存,性能提升了100倍以上。

云原生一体化HTAP,采用Zero-ETL技术,“PolarDB+AnalyticDB”、“RDS+ClickHouse”之间可实现亚秒级数据同步,提供统一入口的一站式HTAP体验,为用户节省10倍链路同步成本,建仓速度提升高达7倍。

以“PolarDB MySQL版+AnalyticDB for MySQL版”为例,针对多源汇聚分析场景,云原生一体化HTAP提供PolarDB←→AnalyticDB的内置数据同步链路,数据可以实现无缝流转,客户也无需维护额外数据管道,可降低90%的数据链路成本并减少运维负担。通过高速并行通道,可加速数据初始化性能,大幅降低建仓所需时间,真正实现复杂交易和复杂分析的一体化,目前该能力已在多家互联网行业客户中落地。

在交易的核心场景如电商、SaaS应用等,用户一般情况下不会直连数据库,在交易数据库前面会存在缓存,如Redis等架构。如何保证缓存数据和后台数据的一致性,成为了企业的关键挑战。大多数情况下,开发者需要编写大量业务代码和业务架构来保证缓存与数据库的一致性。

瑶池数据库推出了“DB+Cache”一体化能力,实现“PolarDB+Tair”、“RDS+Redis”之间的数据自动同步与融合,在解决缓存数据一致性难题的同时,也实现了内存资源统一调度与管理,帮助用户降本增效(最高节省30%成本)、提升体验。

此外,瑶池数据库与存储也实现了“DB+存储”一体化,基于数据库缓存池拓展(Buffer Pool Extension)、Auto PL、冷热分离等技术,将冷热温业务数据分层存储,提升性能,可降低高达90%存储成本。

阿里云瑶池正在持续推动以PolarDB为代表的云数据库向云原生纵深发展。在2023年云栖大会期间,阿里云发布了PolarDB Always On系列3大技术升级:

一是Multi-Master三层解耦架构,结合RDMA/CXL支持的三层解耦技术,内存池化,提升CPU内存使用率,内存使用率提升50%。

二是Multi-Master轮动升级,集群轮动升级,升级集群不停机,进一步提升SLA,不可用时间减少50%。

三是高压缩比数据存储,采用in-Memory行级压缩、Smart SSD 2.0硬件压缩等为代表的软硬件一体化压缩技术,最高可节省80%存储成本。

基于这样的技术前提,阿里云在2024年1月的PolarDB开发者大会上发布了PolarDB“三层分离”的新版本,基于智能决策实现查询性能10倍提升,节省50%成本。

在产品设计上,PolarDB融入了对用户需求的深度理解和对开发流程的简化重构。对于PolarDB团队而言,在面对复杂的数据库配置与优化时,第一反应是为用户提供能直观理解、快速上手并灵活定制的工具,而不是一堆难以驾驭的技术堆砌。因此,PolarDB借鉴“乐高积木”的理念,将数据库的不同功能模块化,让开发者可以依据自身项目特点和业务需求,自由选择和组合这些模块。通过Zero-ETL等技术手段,PolarDB可以与AnalyticDB等其他云数据库产品无缝连接,形成一体化的数据处理解决方案,这个过程就类似于“搭积木”。

“传统数据库会像马车一样被淘汰”,这句预言随着云原生与分布式技术的普及应用而逐渐得到印证。如今,数据库的门槛已经被一再降低,阿里云也在致力于推动云数据库向更高层次演进,从“手动挡”进化到由AI驱动的“自动驾驶”状态。

数据库要怎么学会自动驾驶?和汽车的自动驾驶一样,本质上都是在实时调参。自动驾驶调整方向盘、刹车和油门等参数来应对复杂路况,而采用了“三层分离”架构的PolarDB云数据库中,内存、存储以及计算资源池也能够借助AI的力量进行动态适配,根据业务负载变化做出最优资源配置。

由此可见,数据库正在迎来一场新的技术革命,数据库和智能化的结合,是未来非常重要的发展方向,用户使用数据库的门槛也将大幅降低。

在PolarDB开发者大会现场,一位11岁的小学生被邀到台上操作PolarDB的NL2BI解决方案。他用大白话敲了几行字,NL2BI平台就在系统实时返回了专业的SQL语言,还输出了可视化的数据分析结果。数据库领域的增删改查从此变成了GPT式的自然语言交互窗口。

AI驱动,数据平台走向一站式智能化

作为AIGC应用的基础设施,阿里云瑶池数据库在AI领域也在不断进行技术布局与应用探索。通过扩展面向Al的数据管理与服务能力,打造智能化的一站式数据管理平台,让云原生数据库更易用,助力用户抢占商业先机。

瑶池数据库推出的数据智能助手DMSDataCopilot,结合了DMS智能数据管理、数据使用能力,让SQL开发、使用和管理更加规范和高效,是用户“看数、管数、用数”不可或缺的智能管家。DMSDataCopilot支持30+种数据库类型,可提供NL2SQL(降低SQL编写门槛、提升开发效率)、SQL注释生成、SQL纠错、SQL优化等功能。在耶鲁大学推出的Spider数据集评测中,DMSCopilot的成功率和准确率达到99.5%和78%,比开源模型的正确率高出4%。

AIGC和LLM大模型浪潮的崛起,进一步推动了业务和应用对向量数据库的需求。瑶池数据库现已全面拥抱向量检索能力,在PolarDB、RDS、AnalyticDB、Lindorm、Tair等产品中集成向量功能,实现结构化数据、半结构化数据、多模数据、向量数据的一体化处理。

其中,企业级智能数据仓库AnalyticDB与通义大模型家族深度集成,推出一站式全托管大模型解决方案。通义行业大模型和阿里云百炼大模型服务平台采用AnalyticDB作为内置向量检索引擎,为政务、医药、电力、制造、汽车、金融等千行百业提供专属行业解决方案,性能较开源增强了2~5倍,加速AIGC应用落地。

云原生多模数据库Lindorm具备多模数据处理能力,是集在线服务、离线分析、向量、Al分析能力于一身的一站式AI数据平台。数据不出库,即可轻松存储和分析海量的半结构化和非结构化数据。

数据库的生态共赢,服务了千行百业的创新

云数据库生态的蓬勃发展,依托于合作伙伴的技术协同,构建了多元开放的生态体系。作为国内首个MongoDB云服务商战略合作伙伴和唯一可提供最新版本MongoDB服务的中国云厂商,阿里云的云数据库MongoDB版3年营收实现8倍增长。未来,MongoDB与阿里云的战略合作也将持续深入,帮助更多企业实现数据创新和业务增长,携手开启创新下一站。阿里云已与开源分析型数据库ClickHouse达成国内独家战略合作。作为ClickHouse在中国独家的云服务提供商,阿里云拥有世界上最大的ClickHouse商用集群之一,可提供具备独有企业能力的云原生ClickHouse企业版。企业版为存算分离架构,秒级弹性,按量计费,比开源自建成本降低30%+。

这一系列核心战略合作,都是围绕一站式数据管理平台愿景的战略布局,旨在让数据平台像搭积木一样好用、易用。当用户需要插入新的“积木块”时,数据平台可以快速形成生产力,让企业客户享受全方位、一站式的平台优势。

数据库的发展史,也是IT技术创新史的缩影,新兴应用场景不断驱动着这一行业的创新。传统商业数据库,在面对高并发业务实时数据处理需求时,会受限于硬件扩展性和运维复杂性。云原生数据库,则凭借其高度弹性、自动伸缩及与云基础设施的深度融合,为企业提供了快速响应市场业务峰谷变化的能力,显著提高了业务敏捷性和数据处理效率。

目前,阿里云瑶池数据库已在千行百业的核心业务中落地应用,服务于自然人税收管理系统、全国60%的省级医保信息平台、广东移动、上交所、友邦保险、南方基金、上海市新能源汽车数据平台、掌阅科技、莉莉丝游戏、识货APP等金融、政务、电信、互联网多领域的大型企业。

以阿里云瑶池旗下自研的云原生数据库PolarDB为例,其商业化应用在生活中随处可见。阿里巴巴集团内部的电商业务,曾对PolarDB提出了世界级的技术挑战,比如在天猫“双11”峰值零点后的第一秒,交易量会瞬间激增高达145倍。PolarDB在此期间创下了每秒处理1.4亿次事务(TPS)的世界级记录。

在保险领域,每年一月的“开门红”活动是保险行业的“双11”,当月销售或占全年销售总额50%,保单峰值则是平时10倍以上。保险行业的数据处理有“读多写少”的特点,传统关系型数据库最多支持1写8读,平均一笔订单处理时长为1-2秒,多订单并行会导致处理速度下降,订单只能次日生效。

友邦保险集团自2019年起启动“Cloud First”战略,计划推动业务系统从传统数据中心向“云原生分布式”转型。友邦人寿与阿里云达成合作,在“开门红”等高峰场景下引入云原生数据库以支撑业务系统对弹性、扩展的需求。PolarDB凭借一写多读(1写15读甚至更多读)、并行查询等功能,解决了友邦每笔保单生成、处理过程中的大量查询操作和成百上千次的读请求。在流量洪峰等特殊情况下,PolarDB每秒可以处理上千笔订单,轻松应对友邦人寿“开门红”活动流量洪峰时的系统拥堵问题,确保订单实时生效。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
6天前
|
数据采集 SQL 人工智能
瓴羊Dataphin:AI驱动的数据治理——千里之行,始于标准 |【瓴羊数据荟】数据MeetUp第三期
数据标准是数据治理的核心抓手,通过梳理数据标准可以有效提升数据质量。瓴羊Dataphin平台利用AI技术简化数据治理流程,实现自动化的数据标准建立、质量规则构建和特征识别,助力企业在大模型时代高效治理数据,推动数据真正为业务服务。
228 28
瓴羊Dataphin:AI驱动的数据治理——千里之行,始于标准 |【瓴羊数据荟】数据MeetUp第三期
|
8天前
|
人工智能 运维 数据可视化
AI驱动操作系统服务评测报告
阿里云操作系统服务套件集成AI技术,提供集群健康、系统诊断、观测分析和OS Copilot等功能,助力高效管理。安装组件流程简便,系统观测与诊断功能强大,数据可视化效果佳,支持历史趋势分析。OS Copilot智能助手回答逻辑清晰,但部分问题需增强专业性。整体评价高,建议进一步优化错误提示、自动诊断及订阅服务记录,提升用户体验。
56 25
AI驱动操作系统服务评测报告
|
2天前
|
机器学习/深度学习 人工智能 文字识别
Zerox:AI驱动的万能OCR工具,精准识别复杂布局并输出Markdown格式,支持PDF、DOCX、图片等多种文件格式
Zerox 是一款开源的本地化高精度OCR工具,基于GPT-4o-mini模型,支持PDF、DOCX、图片等多种格式文件,能够零样本识别复杂布局文档,输出Markdown格式结果。
28 4
Zerox:AI驱动的万能OCR工具,精准识别复杂布局并输出Markdown格式,支持PDF、DOCX、图片等多种文件格式
|
1天前
|
人工智能 运维 监控
探索未来:AI驱动的操作系统服务评测
### 探索未来:AI驱动的操作系统服务评测 本文介绍阿里云新推出的AI驱动操作系统服务套件,为运维工程师和开发者提供免费、智能的操作系统管理体验。通过Alibaba Cloud Linux的实际操作,评估其安装便捷性、系统健康监控、智能助手OS Copilot等功能。该服务显著提升了工作效率约30%,并增强了服务可靠性。AI技术的融入使系统管理更加智能化,值得尝试。
42 16
|
1天前
|
人工智能 弹性计算 运维
AI驱动的操作系统服务评测报告
阿里云推出AI驱动的一站式免费操作系统服务套件,包含SysOM管控组件和OS Copilot智能助手,提供集群健康监测、深度系统诊断等功能。通过直观的操作界面和详尽的诊断报告,帮助运维人员优化系统性能,提高工作效率。特别针对EOL操作系统提供订阅管理服务,确保系统安全。整体体验令人满意,但在文档详细度和定制化方面仍有提升空间。
39 13
|
6天前
|
人工智能 自然语言处理 数据可视化
校企合作|TsingtaoAI携手潍坊学院,共建AI驱动的党建信息化系统
TsingtaoAI与潍坊学院近日达成合作,正式签署《人工智能党建信息化系统开发》技术开发合同,计划在未来两年内联合开发一套集党员教育、党务管理、党建活动智能化以及数据可视化于一体的智能党建系统。本次合作将充分结合TsingtaoAI在AI大模型领域的技术优势和潍坊学院的学术资源,为推动党建工作的数字化、智能化和高效化注入新的动力。
31 10
|
6天前
|
人工智能 运维 Linux
AI驱动的操作系统服务体验:大模型时代的运维革新
AI驱动的操作系统服务体验:大模型时代的运维革新
23 5
|
9天前
|
人工智能 安全 Dubbo
Spring AI 智能体通过 MCP 集成本地文件数据
MCP 作为一款开放协议,直接规范了应用程序如何向 LLM 提供上下文。MCP 就像是面向 AI 应用程序的 USB-C 端口,正如 USB-C 提供了一种将设备连接到各种外围设备和配件的标准化方式一样,MCP 提供了一个将 AI 模型连接到不同数据源和工具的标准化方法。
|
9天前
|
人工智能 运维 监控
评测报告:AI驱动的操作系统服务套件体验
评测报告:AI驱动的操作系统服务套件体验
20 3
|
5天前
|
人工智能 运维 安全
AI 驱动,全面升级!操作系统服务套件体验评测
作为一名运维工程师,我体验了阿里云的操作系统服务套件,选择了Alibaba Cloud Linux作为测试环境。通过安装SysOM和OS Copilot组件,轻松管理集群健康数据、进行系统诊断并获得优化建议。OS Copilot智能解答技术问题,节省查阅资料时间;订阅管理帮助我及时升级操作系统,保障安全。整体功能强大,提升了约20%的工作效率,值得推广。建议增加更多系统版本支持及自动优化功能。