52个AIGC视频生成算法模型介绍(上)

简介: 52个AIGC视频生成算法模型介绍(上)



基于Diffusion模型的AIGC生成算法日益火热,其中文生图,图生图等图像生成技术普遍成熟,很多算法从业者开始从事视频生成算法的研究和开发,原因是视频生成领域相对空白。



AIGC视频算法发展现状

从2023年开始,AIGC+视频的新算法层出不穷,其中最直接的是把图像方面的成果引入视频领域,并结合时序信息去生成具有连续性的视频。随着Sora的出现,视频生成的效果又再次上升了一个台阶,因此有必要将去年一年到现在的视频领域进展梳理一下,为以后的视频方向的研究提供一点思路。

AIGC视频算法分类


AIGC视频算法,经过梳理发现,可以大体分为:文生视频,图生视频,视频编辑,视频风格化,人物动态化,长视频生成等方向。具体的输入和输出形式如下:

  1. 文生视频:输入文本,输出视频
  2. 图生视频:输入图片(+控制条件),输出视频
  3. 视频编辑:输入视频(+控制条件),输出视频
  4. 视频风格化:输入视频,输出视频
  5. 人物动态化:输入图片+姿态条件,输出视频
  6. 长视频生成:输入文本,输出长视频



具体算法梳理


 文生视频


  • CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers


机构:清华时间:2022.5.29https://github.com/THUDM/CogVideo.简单介绍:基于两阶段的transformer(生成+帧间插值)来做文生视频

  • IMAGEN VIDEO


机构:Google时间:2022.10.5简单介绍:基于google的Imagen来做的时序扩展,而Imagen和Imagen video都没有开源

  • Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators


机构:Picsart AI Resarch

时间:2023.3.23

https://github.com/Picsart-AI-Research/Text2Video-Zero

简单介绍:基于图像diffusion model引入corss-frame attention来做时序建模,其次通过显著性检测来实现背景平滑。

  • MagicVideo: Efficient Video GenerationWith Latent Diffusion Models


机构:字节

时间:2023.5.11

简单介绍:直接将图像SD架构扩展成视频,增加了时序信息


  • AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning


机构:上海 AI Lab

时间:2023.7.11

https://animatediff.github.io/

简单介绍:基于图像diffusion model,训练一个运动建模模块,来学习运动信息


  • VideoCrafter1: Open Diffusion Models for High-Quality Video Generation


机构:腾讯 AI Lab

时间:2023.10.30

https://ailab-cvc.github.io/videocrafter

简单介绍:基于diffusion模型,网络架构采用空间和时序attention操作来实现视频生成


 图生视频


  • AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning


机构:上海 AI Lab

时间:2023.7.11

https://animatediff.github.io/


  • VideoCrafter1: Open Diffusion Models for High-Quality Video Generation


机构:腾讯 AI Lab

时间:2023.10.30

https://ailab-cvc.github.io/videocrafter


  • stable video diffusion


机构:Stability AI

时间:2023.11.21

https://stability.ai/news/stable-video-diffusion-open-ai-video-model

简单介绍:基于SD2.1增加时序层,来进行视频生成


  • AnimateZero: Video Diffusion Models are Zero-Shot Image Animators


机构:腾讯 AI Lab

时间:2023.12.6

https://github.com/vvictoryuki/AnimateZero(未开源)

简单介绍:基于Animate Diff增加了位置相关的attention


  • AnimateAnything: Fine-Grained Open Domain Image Animation with Motion Guidance


机构:阿里

时间:2023.12.4

https://animationai.github.io/AnimateAnything/

简单介绍:可以针对特定位置进行动态化,通过学习运动信息实现时序信息生成


  • LivePhoto: Real Image Animation with Text-guided Motion Control


机构:阿里

时间:2023.12.5

https://xavierchen34.github.io/LivePhoto-Page/(未开源)

简单介绍:将参考图,运动信息拼接作为输入,来进行图像的动态化


 视频风格化


  • Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation


机构:南洋理工

时间:2023.12.17

https://www.mmlab-ntu.com/project/rerender/

简单介绍:基于SD+controlnet,结合cros-frame attention来风格化视频序列


  • DCTNet


机构:阿里达摩院

时间:2022.7.6

https://github.com/menyifang/DCT-Net/

简单介绍:基于GAN的框架做的视频风格化,目前支持7种不同的风格


 视频编辑


主要是将深度图或者其他条件图(canny/hed),通过网络注入Diffusion model中,控制整体场景生成,并通过prompt设计来控制主体目标的外观。其中controlnet被迁移进入视频编辑领域,出现了一系列controlnetvideo的工作。


  • Structure and Content-Guided Video Synthesis with Diffusion Models


机构:Runway

时间:2023.2.6

https://research.runwayml.com/gen1


  • Animate diff+ControlNet(基于WebUI API)


  • Video-P2P: Video Editing with Cross-attention Control


机构:港中文,adobe

时间:2023.3.8

https://video-p2p.github.io/


52个AIGC视频生成算法模型介绍(中):https://developer.aliyun.com/article/1480688

目录
相关文章
|
14天前
|
机器学习/深度学习 算法
扩散模型=进化算法!生物学大佬用数学揭示本质
在机器学习与生物学交叉领域,Tufts和Harvard大学研究人员揭示了扩散模型与进化算法的深刻联系。研究表明,扩散模型本质上是一种进化算法,通过逐步去噪生成数据点,类似于进化中的变异和选择机制。这一发现不仅在理论上具有重要意义,还提出了扩散进化方法,能够高效识别多解、处理高维复杂参数空间,并显著减少计算步骤,为图像生成、视频合成及神经网络优化等应用带来广泛潜力。论文地址:https://arxiv.org/pdf/2410.02543。
37 21
|
20天前
|
人工智能 算法 搜索推荐
单纯接入第三方模型就无需算法备案了么?
随着人工智能的发展,企业接入第三方模型提升业务能力的现象日益普遍,但算法备案问题引发诸多讨论。根据相关法规,无论使用自研或第三方模型,只要涉及向中国境内公众提供算法推荐服务,企业均需履行备案义务。这不仅因为服务性质未变,风险依然存在,也符合监管要求。备案内容涵盖模型基本信息、算法优化目标等,且需动态管理。未备案可能面临法律和运营风险。建议企业提前规划、合规管理和积极沟通,确保合法合规运营。
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
340 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
127 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
2月前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
2月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
189 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
189 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
青否数字人声音克隆算法升级,16个超真实直播声音模型免费送!
青否数字人的声音克隆算法全面升级,能够完美克隆真人的音调、语速、情感和呼吸。提供16种超真实的直播声音模型,支持3大AI直播类型和6大核心AIGC技术,60秒快速开播,助力商家轻松赚钱。AI讲品、互动和售卖功能强大,支持多平台直播,确保每场直播话术不重复,智能互动和真实感十足。新手小白也能轻松上手,有效规避违规风险。
|
3月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。

热门文章

最新文章