Ribbon的负载均衡策略

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: Ribbon的负载均衡策略

关系UML类图

如图所示,可以看到在Ribbon中实现了非常多的选择策略,下面我们来详细看一下IRule接口的各个实现。

AbstractLoadBalancerRule

负载均衡策略的抽象类,在该抽象类中定义了负载均衡器ILoadBalancer对象,该对象能够在具体实现选择服务策略时,获取到一些负载均衡器中维护的信息来作为分配依据,并以此设计一些算法来实现针对特定场景的高效策略。

RandomRule

该策略实现了从服务实例清单中随机选择一个服务实例的功能。具体的选择逻辑在一个while(server==null)循环之内,而根据选择逻辑的实现,正常情况下每次选择都应该选出一个服务实例,如果出现死循环获取不到服务实例,如果出现死循环获取不到服务实例时,则很有可能存在并发的Bug。

RoundRobinRule

该策略实现了按照线性轮询的方式的方式一次选择每个服务实例的功能。它的具体实现如下,其详细结构与RandomRule非常类似。除了循环条件不同外,就是从可用列表中获取所谓的逻辑不通。从循环条件中,我们可以看到增加了一个count计数变量,该变量会在每次循环之后累加,也就是说,如果一直选择不到server超过10次,那么就会结束尝试,并打印一个警告信息No available alive servers after 10tries from load balancer : … 。

RetryRule

该策略实现了一个具备重试机制的实例选择功能。从下面的实现中我们可以看到,在其内部还定义了一个IRule对象,默认使用了RoudRobinRule实例。而在choose方法中则实现了对内部定义的策略进行反复尝试的策略,若期间能够选择到具体的服务实例就反悔,若选择不到就根据设置结束时间为阀值(maxRetryMillis参数定义的值+choose方法开始执行的时间戳),当超过该阀值就返回null。

WeightedResponseTimeRule

该策略是对RoundRobinRule的扩展,增加了根据实例等运行情况来计算权重,并根据权重来挑选实例,以达到更优的分配效果,它的实现主要有三个核心内容。

  1. 定时任务
  2. 权重计算
  3. 实例选择

ClientConfigEnabledRoundRobinRule

该策略较为特殊,我们一般不直接使用它,因为它本身并没有实现什么特殊的处理逻辑,正如下面的源码所示,在它的内部定义了一个RoundRobinRule策略,而choose函数的实现也正是使用了RoundRobinRule的线性轮询机制,所以它实现的功能实际上与RoundRobinRule相同,那么定义它有什么特殊的用处呢?

虽然我们不会直接使用该策略,但是通过继承该策略,默认的choose就实现了线性轮询机制,在子类中做一些高级策略时通常有可能会存在一些无法实施的情况,那么久可以用父类的实现作为备选。在后面中我们将继续介绍的高级策略均是基于ClientConfigEnabledRoundRobinRule的扩展。

BestAvailableRule

该策略继承自ClientConfigEnabledRoundRobinRule,在实现中它注入了负载均衡器的统计对象LoadBalancerStats,同时在具体的choose算法中利用LoadBalancerStats保存的实例统计信息来选择满足要求的实例。从如下源码中我们可以看到,它通过遍历负载均衡器中维护的所有服务实例,会过滤掉故障的实例,并找出并发请求数最小的一个,所以该策略的特性是可选出最空闲的实例。

同时,由于该算法的核心依据是统计对象LoadBalancerStats,当其为空的时候,该策略是无法执行的。所以从源码中我们可以看到,当loadBalancerStats为空的时候,它会采用父类的线性轮询策略,正如我们在介绍ClientConfigEnabledRoundRobinRule时那样,它的子类在无法满足实现高级策略的时候,可以使用线性轮询策略的特性。后面将要介绍的策略因为也都继承自ClientConfigEnabledRoundRobinRule,所以它们都会具有这样的特性。

PredicateBasedRule

这是一个抽象策略,它也继承了ClientConfigEnabledRoundRobinRule,从其命名中可以猜出这是一个基于Predicate实现的策略,Predicate是Google Guava Collections工具对集合进行过滤掉条件接口。

Google Guava Collections是一个对Java Collections Framework增强和扩展的开源项目。虽然Java Collections Framework已经能够满足我们大多数抢空下使用集合的要求,但是当遇到一些特殊情况时,我们的代码会比较冗长且容易出错。Google Guava Collections可以帮助我们让集合操作代码更为简短精炼并大大增强代码的可读性。

AvailabilityFilteringRule

该策略继承自上面介绍的抽象策略PredicateBasedRule,所以它也继承了“先过滤清单,再轮询选择”的的基本处理逻辑,其中过滤条件使用了AvailabilityPredicate。简单地说,该策略通过线性抽样的方式直接尝试寻找可用且较空闲的实例来使用,优化了父类每次都要遍历所有实例的开销。

ZoneAvoidanceRule

该策略我们在介绍负载均衡器ZoneAwareLoadBalancer时已经提到过,它也是PredicateBasedRule的具体实现类,在之前的介绍中主要针对ZoneAvoidanceRule中用于选择Zone区域策略的一些静态函数,比如createSnapshot(LoadBalancerStats lbStats)、getAvailableZones(Map snapshot, double triggeringLoad,double triggeringBlackoutPercentage)。在这里我们将详细看看ZoneAvoidanceRule作为服务实例过滤条件的实现原理。从下面ZoneAvoidanceRule的源码片段中可以看到,它使用了CompositePredicate来进行服务实例清单的过滤。这是一个组合过来条件,在其构造函数中,它以ZoneAvoidanceRule为主过滤条件,AvailabilityPredicate为次过滤条件初始化了组合过滤条件的实例。

常用策略

策略 描述 是否默认
RoundRobinRule 轮询策略,按顺序循环选择服务实例 ✔︎
RandomRule 随机策略,随机选择服务实例
AvailabilityFilteringRule 可用过滤策略,会先过滤由于多次访问故障而处于断路器跳闸状态的服务,还有并发的连接数量超过阈值的服务,然后对剩余的服务列表按照轮 询策略进行访问
WeightedResponseTimeRule 响应时间加权策略,根据平均响应的时间计算所有服务的权重,响应时间越快服务权重越大被选中的概率越高,刚启动时如果统计信息不足,则使用RoundRobinRule策略,等统计信息足够会自动切换
RetryRule 重试策略,先按照RoundRobinRule的策略获取服务,如果获取失败则在制定时间内进行重试,获取可用的服务
BestAviableRule 最低并发策略,会先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务

修改服务的默认策略

根据服务的不同可以设置不同的负载均衡策略,使用服务名称当作前缀进行以下配置

# 修改订单服务的负载均衡策略为随机
ORDERS.ribbon.NFLoadBalancerRuleClassName=com.netflix.loadbalancer.RandomRule


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1月前
|
负载均衡 Java Nacos
Ribbon负载均衡
Ribbon负载均衡
32 1
Ribbon负载均衡
|
1月前
|
负载均衡 算法 Java
除了 Ribbon,Spring Cloud 中还有哪些负载均衡组件?
这些负载均衡组件各有特点,在不同的场景和需求下,可以根据项目的具体情况选择合适的负载均衡组件来实现高效、稳定的服务调用。
82 5
|
18天前
|
负载均衡 Java Nacos
常见的Ribbon/Spring LoadBalancer的负载均衡策略
自SpringCloud 2020版起,Ribbon被弃用,转而使用Spring Cloud LoadBalancer。Ribbon支持轮询、随机、加权响应时间和重试等负载均衡策略;而Spring Cloud LoadBalancer则提供轮询、随机及Nacos负载均衡策略,基于Reactor实现,更高效灵活。
43 0
|
2月前
|
负载均衡 应用服务中间件 nginx
Nginx的6大负载均衡策略及权重轮询手写配置
【10月更文挑战第9天】 Nginx是一款高性能的HTTP服务器和反向代理服务器,它在处理大量并发请求时表现出色。Nginx的负载均衡功能可以将请求分发到多个服务器,提高网站的吞吐量和可靠性。以下是Nginx支持的6大负载均衡策略:
252 7
|
2月前
|
负载均衡 算法 Java
腾讯面试:说说6大Nginx负载均衡?手写一下权重轮询策略?
尼恩,一位资深架构师,分享了关于负载均衡及其策略的深入解析,特别是基于权重的负载均衡策略。文章不仅介绍了Nginx的五大负载均衡策略,如轮询、加权轮询、IP哈希、最少连接数等,还提供了手写加权轮询算法的Java实现示例。通过这些内容,尼恩帮助读者系统化理解负载均衡技术,提升面试竞争力,实现技术上的“肌肉展示”。此外,他还提供了丰富的技术资料和面试指导,助力求职者在大厂面试中脱颖而出。
腾讯面试:说说6大Nginx负载均衡?手写一下权重轮询策略?
|
3月前
|
负载均衡 Java Nacos
SpringCloud基础1——远程调用、Eureka,Nacos注册中心、Ribbon负载均衡
微服务介绍、SpringCloud、服务拆分和远程调用、Eureka注册中心、Ribbon负载均衡、Nacos注册中心
SpringCloud基础1——远程调用、Eureka,Nacos注册中心、Ribbon负载均衡
|
3月前
|
负载均衡 Java 对象存储
负载均衡策略:Spring Cloud与Netflix OSS的最佳实践
负载均衡策略:Spring Cloud与Netflix OSS的最佳实践
57 2
|
4月前
|
存储 设计模式 缓存
OpenFeign集成Ribbon负载均衡-过滤和选择服务核心实现
该文章主要介绍了如何在OpenFeign中集成Ribbon以实现负载均衡,并详细分析了Ribbon中服务选择和服务过滤的核心实现过程。文章还涉及了Ribbon中负载均衡器(ILoadBalancer)和负载均衡策略(IRule)的初始化方式。
OpenFeign集成Ribbon负载均衡-过滤和选择服务核心实现
|
4月前
|
缓存 负载均衡 Java
OpenFeign最核心组件LoadBalancerFeignClient详解(集成Ribbon负载均衡能力)
文章标题为“OpenFeign的Ribbon负载均衡详解”,是继OpenFeign十大可扩展组件讨论之后,深入探讨了Ribbon如何为OpenFeign提供负载均衡能力的详解。
OpenFeign最核心组件LoadBalancerFeignClient详解(集成Ribbon负载均衡能力)
|
3月前
|
负载均衡 Java 开发者
Ribbon框架实现客户端负载均衡的方法与技巧
Ribbon框架为微服务架构中的客户端负载均衡提供了强大的支持。通过简单的配置和集成,开发者可以轻松地在应用中实现服务的发现、选择和负载均衡。适当地使用Ribbon,配合其他Spring Cloud组件,可以有效提升微服务架构的可用性和性能。
42 0