通过阿里云Milvus和通义千问快速构建基于专属知识库的问答系统

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本文展示了如何使用阿里云向量检索 Milvus 版和灵积(Dashscope)提供的通用千问大模型能力,快速构建一个基于专属知识库的问答系统。在示例中,我们通过接入灵积的通义千问 API 及文本嵌入(Embedding)API 来实现 LLM 大模型的相关功能。

本文展示了如何使用阿里云向量检索Milvus和灵积(Dashscope)提供的通用千问大模型能力,快速构建一个基于专属知识库的问答系统。在示例中,我们通过接入灵积的通义千问API及文本嵌入(Embedding)API来实现LLM大模型的相关功能。


前提条件


使用限制

请确保您的运行环境中已安装 Python 3.8或以上版本,以便顺利安装并使用 DashScope。


操作流程

准备工作

  1. 安装相关的依赖库。
pip3 install pymilvus tqdm dashscope


  1. 下载所需的知识库。
    本文示例使用了公开数据集 CEC-Corpus。CEC-Corpus 数据集包含332篇针对各类突发事件的新闻报道,语料和标注数据,这里我们只需要提取原始的新闻稿文本,并将其向量化后入库。
git clone https://github.com/shijiebei2009/CEC-Corpus.git


步骤一:知识库向量化

  1. 创建 embedding.py 文件,内容如下所示。
import os
import time
from tqdm import tqdm
import dashscope
from dashscope import TextEmbedding
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection, utility


def prepareData(path, batch_size=25):
    batch_docs = []
    for file in os.listdir(path):
        with open(path + '/' + file, 'r', encoding='utf-8') as f:
            batch_docs.append(f.read())
            if len(batch_docs) == batch_size:
                yield batch_docs
                batch_docs = []
                
    if batch_docs:
        yield batch_docs
        
        
def getEmbedding(news):
    model = TextEmbedding.call(
        model=TextEmbedding.Models.text_embedding_v1,
        input=news
    )
    embeddings = [record['embedding'] for record in model.output['embeddings']]
    return embeddings if isinstance(news, list) else embeddings[0]


if __name__ == '__main__':
    
    current_path = os.path.abspath(os.path.dirname(__file__))   # 当前目录
    root_path = os.path.abspath(os.path.join(current_path, '..'))   # 上级目录
    data_path = f'{root_path}/CEC-Corpus/raw corpus/allSourceText'  # 数据下载git clone https://github.com/shijiebei2009/CEC-Corpus.git
    
    # 配置Dashscope API KEY
    dashscope.api_key = '<YOUR_DASHSCOPE_API_KEY>'
    
    # 配置Milvus参数
    COLLECTION_NAME = 'CEC_Corpus'
    DIMENSION = 1536
    MILVUS_HOST = 'c-97a7d8038fb8****.milvus.aliyuncs.com'
    MILVUS_PORT = '19530'
    USER = 'root'
    PASSWORD = '<password>'
    
    connections.connect(host=MILVUS_HOST, port=MILVUS_PORT, user=USER, password=PASSWORD)
    
    # Remove collection if it already exists
    if utility.has_collection(COLLECTION_NAME):
        utility.drop_collection(COLLECTION_NAME)
    
    # Create collection which includes the id, title, and embedding.
    fields = [
        FieldSchema(name='id', dtype=DataType.INT64, descrition='Ids', is_primary=True, auto_id=False),
        FieldSchema(name='text', dtype=DataType.VARCHAR, description='Text', max_length=4096),
        FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, description='Embedding vectors', dim=DIMENSION)
    ]
    schema = CollectionSchema(fields=fields, description='CEC Corpus Collection')
    collection = Collection(name=COLLECTION_NAME, schema=schema)
    
    # Create an index for the collection.
    index_params = {
        'index_type': 'IVF_FLAT',
        'metric_type': 'L2',
        'params': {'nlist': 1024}
    }
    collection.create_index(field_name="embedding", index_params=index_params)
    
    id = 0
    for news in tqdm(list(prepareData(data_path))):
        ids = [id + i for i, _ in enumerate(news)]
        id += len(news)
        
        vectors = getEmbedding(news)
        # insert Milvus Collection
        for id, vector, doc in zip(ids, vectors, news):
            insert_doc = (doc[:498] + '..') if len(doc) > 500 else doc
            ins = [[id], [insert_doc], [vector]]  # Insert the title id, the text, and the text embedding vector
            collection.insert(ins)
            time.sleep(2)


本文示例涉及以下参数,请您根据实际环境替换。

参数

说明

data_path

存放CEC-Corpus数据的路径。

COLLECTION_NAME

设置Miluvs Collection名称,您可以自定义。

dashscope_api_key

模型服务灵积的密钥。您可以在模型服务灵积控制台的API-KEY管理页面查看。

DIMENSION

向量维度。固定值为1536。

MILVUS_HOST

Milvus实例的公网地址。您可以在Milvus实例的实例详情页面查看。

MILVUS_PORT

Milvus实例的Proxy Port。您可以在Milvus实例的实例详情页面查看。默认为19530。

USER

配置为创建Milvus实例时,您自定义的用户。

PASSWORD

配置为创建Milvus实例时,您自定义用户的密码。


  1. 在Attu中您可以看到已经创建的Collection,具体操作请参见Attu工具管理


在本文示例中,我们将Embedding向量和新闻报道文稿一起存入Milvus中,同时构建索引类型采用了IVF_FLAT,在向量检索时,同时可以召回原始文稿。


步骤二:向量检索与知识问答

数据写入完成后,即可进行快速的向量检索。在通过提问搜索到相关的知识点后,我们可以按照特定的模板将“提问 + 知识点”作为prompt向LLM发起提问。在这里我们所使用的LLM是通义千问,这是阿里巴巴自主研发的超大规模语言模型,能够在用户自然语言输入的基础上,通过自然语言理解和语义分析,理解用户意图。通过提供尽可能清晰详细的指令(prompt),可以获得更符合预期的结果。这些能力都可以通过通义千问来获得。


本文示例设计的提问模板格式为:请基于我提供的内容回答问题。内容是{___},我的问题是{___},当然您也可以自行设计合适的模板。


创建answer.py文件,内容如下所示。

import os
import dashscope
from dashscope import Generation
from pymilvus import connections, FieldSchema, CollectionSchema, DataType, Collection
from embedding import getEmbedding


def getAnswer(query, context):
    prompt = f'''请基于```内的报道内容,回答我的问题。
          ```
          {context}
          ```
          我的问题是:{query}
       '''
    
    rsp = Generation.call(model='qwen-turbo', prompt=prompt)
    return rsp.output.text


def search(text):
    # Search parameters for the index
    search_params = {
        "metric_type": "L2"
    }
    
    results = collection.search(
        data=[getEmbedding(text)],  # Embeded search value
        anns_field="embedding",  # Search across embeddings
        param=search_params,
        limit=1,  # Limit to five results per search
        output_fields=['text']  # Include title field in result
    )
    
    ret = []
    for hit in results[0]:
        ret.append(hit.entity.get('text'))
    return ret


if __name__ == '__main__':
    
    current_path = os.path.abspath(os.path.dirname(__file__))   # 当前目录
    root_path = os.path.abspath(os.path.join(current_path, '..'))   # 上级目录
    data_path = f'{root_path}/CEC-Corpus/raw corpus/allSourceText'
    
    # 配置Dashscope API KEY
    dashscope.api_key = '<YOUR_DASHSCOPE_API_KEY>'
    
    # 配置Milvus参数
    COLLECTION_NAME = 'CEC_Corpus'
    DIMENSION = 1536
    MILVUS_HOST = 'c-97a7d8038fb8****.milvus.aliyuncs.com'
    MILVUS_PORT = '19530'
    USER = 'root'
    PASSWORD = '<password>'
    
    connections.connect(host=MILVUS_HOST, port=MILVUS_PORT, user=USER, password=PASSWORD)
    
    fields = [
        FieldSchema(name='id', dtype=DataType.INT64, descrition='Ids', is_primary=True, auto_id=False),
        FieldSchema(name='text', dtype=DataType.VARCHAR, description='Text', max_length=4096),
        FieldSchema(name='embedding', dtype=DataType.FLOAT_VECTOR, description='Embedding vectors', dim=DIMENSION)
    ]
    schema = CollectionSchema(fields=fields, description='CEC Corpus Collection')
    collection = Collection(name=COLLECTION_NAME, schema=schema)
    
    # Load the collection into memory for searching
    collection.load()
    
    question = '北京中央电视台工地发生大火,发生在哪里?出动了多少辆消防车?人员伤亡情况如何?'
    context = search(question)
    answer = getAnswer(question, context)
    print(answer)


运行完成后,针对北京中央电视台工地发生大火,发生在哪里?出动了多少辆消防车?人员伤亡情况如何?的提问,会得到以下结果。


火灾发生在北京市朝阳区东三环中央电视台新址园区在建的附属文化中心大楼工地。出动了54辆消防车。目前尚无人员伤亡报告。


快速跳转

  1. 向量检索 Milvus 版官网:https://www.aliyun.com/product/milvus
  2. 产品控制台:https://milvus.console.aliyun.com/#/overview
  3. 产品文档:https://help.aliyun.com/zh/milvus/
  4. 标准版申请:https://survey.aliyun.com/apps/zhiliao/JqRjGNFoS



向量检索 Milvus 版用户交流钉钉群

1712734996586.png

目录
打赏
0
2
2
0
126
分享
相关文章
利用通义大模型构建个性化推荐系统——从数据预处理到实时API部署
本文详细介绍了基于通义大模型构建个性化推荐系统的全流程,涵盖数据预处理、模型微调、实时部署及效果优化。通过采用Qwen-72B结合LoRA技术,实现电商场景下CTR提升58%,GMV增长12.7%。文章分析了特征工程、多任务学习和性能调优的关键步骤,并探讨内存优化与蒸馏实践。最后总结了大模型在推荐系统中的适用场景与局限性,提出未来向MoE架构和因果推断方向演进的建议。
86 10
JBoltAI 框架完整实操案例 在 Java 生态中快速构建大模型应用全流程实战指南
本案例基于JBoltAI框架,展示如何快速构建Java生态中的大模型应用——智能客服系统。系统面向电商平台,具备自动回答常见问题、意图识别、多轮对话理解及复杂问题转接人工等功能。采用Spring Boot+JBoltAI架构,集成向量数据库与大模型(如文心一言或通义千问)。内容涵盖需求分析、环境搭建、代码实现(知识库管理、核心服务、REST API)、前端界面开发及部署测试全流程,助你高效掌握大模型应用开发。
101 5
挑战杯专属支持资源|阿里云-AI大模型算力及实验资源丨云工开物
阿里云发起的“云工开物”高校支持计划,助力AI时代人才培养与科研创新。为“挑战杯”参赛选手提供专属算力资源、AI模型平台及学习训练资源,包括300元免费算力券、百炼大模型服务、PAI-ArtLab设计平台等,帮助学生快速掌握AI技能并构建优秀作品,推动产学研融合发展。访问链接领取资源:https://university.aliyun.com/action/tiaozhanbei。
大模型+安全,阿里云发布AI云盾系列产品!
阿里云正式发布AI云盾(Cloud Shield for AI)系列安全产品,包括AI安全护栏、升级云安全中心、WAAP和云防火墙。该系列提供模型输入输出安全、AI-BOM、AI-SPM等能力,构建三层模型安全防御体系,涵盖AI基础设施、大模型及应用安全。其中,AI安全护栏保障生成式AI合规性,实时检测威胁并维护模型健康,支持多模态内容交叉检测的All In One API调用模式。此外,AI-BOM与AI-SPM助力客户持续监控AI资产及安全状态。
210 3
大模型+安全,阿里云发布AI云盾系列产品!
超实用!魔搭社区 + 阿里云边缘云ENS,快速部署大模型应用
本文介绍了如何通过魔搭社区(ModelScope)与阿里云边缘云ENS结合,快速部署大模型并验证其效果。魔搭社区作为中国最大的开源模型平台,提供从模型探索到部署的一站式服务,而阿里云边缘云ENS则以超过3200个全球节点支持低时延、本地化的部署方案。文章详细说明了新建部署入口、模型选择、服务配置及效果验证的全流程,并提供了代码示例展示终端问答Bot的实际运行效果。未来,“模型即服务”(MaaS)模式将持续为开发者和企业带来更多创新机会,助力技术落地与业务升级。
195 25
基于通义大模型的智能客服系统构建实战:从模型微调到API部署
本文详细解析了基于通义大模型的智能客服系统构建全流程,涵盖数据准备、模型微调、性能优化及API部署等关键环节。通过实战案例与代码演示,展示了如何针对客服场景优化训练数据、高效微调大模型、解决部署中的延迟与并发问题,以及构建完整的API服务与监控体系。文章还探讨了性能优化进阶技术,如模型量化压缩和缓存策略,并提供了安全与合规实践建议。最终总结显示,微调后模型意图识别准确率提升14.3%,QPS从12.3提升至86.7,延迟降低74%。
151 13
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人
本文描述在阿里云上从0开始构建一个LLM智能问答钉钉机器人。LLM直接调用了阿里云百炼平台提供的调用服务。
从0开始在阿里云上搭建基于通义千问的钉钉智能问答机器人
微医控股与阿里云达成战略合作,双方将携手基于通义千问大模型联合打造医疗全场景智能体,共同构建医疗垂类大模型
2025年6月17日,微医控股与阿里云达成战略合作,共建医疗AI基座及医疗全场景智能体。双方将基于通义千问大模型打造医疗垂类大模型,升级微医“5+1”智能体,并在诊断、用药、健康管理等环节深化应用。微医将结合阿里云技术优势推进IDC上云,助力AI+医疗基础设施建设,共同制定行业标准并推广城市级AI数字健共体。目前,微医AI服务已连接全国1.2万家医院和30万名医生,健康管理会员超100万。

热门文章

最新文章

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问