Linux内核队列queue.h

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Linux内核队列queue.h


一、简介

queue.h是一个非常经典的文件,定义了一系列宏的操作,它定义了一系列的宏操作,实现了链表,尾队列和循环链表。

queue.h定义了5个基本的数据类型:

  • 单向无尾链表
  • 单向有尾链表
  • 双向无尾链表
  • 双向有尾链表
  • 循环链表

queue相关链表/队列的使用流程为:

  1. 定义自己的结构体
  2. 在结构体中使用XXXX_ENTRY定义链表/队列成员变量
  3. 使用XXXX_HEAD定义一个链表/队列头
  4. 使用XXXX_INIT初始化链表/队列头(也可在定义时初始化)
  5. 使用相关的INSERT、REMOVE、FOREACH、REPLACE方法操作队列

几种类型支持的操作:

二、SLIST单向无尾链表

2.1 介绍

SLIST是Singly-linked List的缩写,意为单向无尾链表。

SLIST适合数据量非常大并且几乎不需要删除数据的场合,或者当作堆栈使用。

SLIST相关的源码:

/*
 * Singly-linked List definitions.
 */
#define SLIST_HEAD(name, type)                                              \
struct name {                                                               \
    struct type *slh_first; /* first element */                             \
}
#define SLIST_HEAD_INITIALIZER(head)                                        \
    { NULL }
#define SLIST_ENTRY(type)                                                   \
struct {                                                                    \
    struct type *sle_next;  /* next element */                              \
}
/*
 * Singly-linked List functions.
 */
#define SLIST_INIT(head) do {                                               \
    (head)->slh_first = NULL;                                               \
} while (/*CONSTCOND*/0)
#define SLIST_INSERT_AFTER(slistelm, elm, field) do {                       \
    (elm)->field.sle_next = (slistelm)->field.sle_next;                     \
    (slistelm)->field.sle_next = (elm);                                     \
} while (/*CONSTCOND*/0)
#define SLIST_INSERT_HEAD(head, elm, field) do {                            \
    (elm)->field.sle_next = (head)->slh_first;                              \
    (head)->slh_first = (elm);                                              \
} while (/*CONSTCOND*/0)
#define SLIST_REMOVE_HEAD(head, field) do {                                 \
    (head)->slh_first = (head)->slh_first->field.sle_next;                  \
} while (/*CONSTCOND*/0)
#define SLIST_REMOVE(head, elm, type, field) do {                           \
    if ((head)->slh_first == (elm)) {                                       \
        SLIST_REMOVE_HEAD((head), field);                                   \
    }                                                                       \
    else {                                                                  \
        struct type *curelm = (head)->slh_first;                            \
        while(curelm->field.sle_next != (elm))                              \
            curelm = curelm->field.sle_next;                                \
        curelm->field.sle_next =                                            \
            curelm->field.sle_next->field.sle_next;                         \
    }                                                                       \
} while (/*CONSTCOND*/0)
#define SLIST_FOREACH(var, head, field)                                     \
    for ((var) = SLIST_FIRST((head));                                       \
        (var);                                                              \
        (var) = SLIST_NEXT((var), field) )
#define SLIST_FOREACH_PREVPTR(var, varp, head, field)                       \
    for ((varp) = &SLIST_FIRST((head));                                     \
        ((var) = *(varp)) != NULL;                                          \
        (varp) = &SLIST_NEXT((var), field) )
/*
 * Singly-linked List access methods.
 */
#define SLIST_EMPTY(head)       ((head)->slh_first == NULL)
#define SLIST_FIRST(head)       ((head)->slh_first)
#define SLIST_NEXT(elm, field)  ((elm)->field.sle_next)

2.2 操作

与单向链表相关的宏、方法和函数有:

// definitions
SLIST_HEAD(name, type)
SLIST_HEAD_INITIALIZER(head)
SLIST_ENTRY(type)
// access methods
SLIST_FIRST(head)
SLIST_END(head)
SLIST_EMPTY(head)
SLIST_NEXT(elm, field)
LIST_FOREACH(var, head, field)
SLIST_FOREACH_PREVPTR(var, varp, head, field)
// functions
SLIST_INIT(head)
SLIST_INSERT_AFTER(slistelm, elm, field)
SLIST_INSERT_HEAD(head, elm, field)
SLIST_REMOVE_NEXT(head, elm, field)
SLIST_REMOVE_HEAD(head, field)
SLIST_REMOVE(head, elm, type, field)

宏定义说明

  • SLIST_HEAD用于定义一个单向链表数据结构体的头变量,该结构体只有一个指针成员slh_first,指向第一个type类型的数据结构;name可以不用(填写);
  • SLIST_HEAD_INITIALIZER用于在定义时初始化SLIST_HEAD定义的数据结构体的头变量;head可以不用填写;
  • SLIST_ENTRY则用于定义一个(用户)结构体的成员变量,该成员变量只包含一个指向type类型的指针sle_next;

与单向链表相关的访问方法有6个

  • SLIST_FIRST用于获取单向链表的第一个元素;
  • SLIST_END定义了尾部的判断标准;
  • SLIST_EMPTY用于判断单向链表是否为空:空则返回true,否则返回false;
  • SLIST_NEXT用于获取elm元素的下一个元素,field是前面用SLIST_ENTRY定义的成员变量名;
  • SLIST_FOREACH用于遍历单向链表,var是临时变量,head是链表头指针(SLIST_HEAD定义的变量),field是SLIST_ENTRY定义的成员变量名;
  • SLIST_FOREACH_PREVPTR与SLIST_FOREACH类似,用于遍历单向链表,不过提供更多的一个临时指针变量varp,指向var指向元素的地址;

与单向链表相关的函数有6个

  • SLIST_INIT用于初始化SLIST_HEAD定义的头指针变量;当然也可以在使用SLIST_HEAD定义头指针变量时同时使用SLIST_HEAD_INITIALIZER进行初始化;
  • SLIST_INSERT_AFTER用于将元素elm插入到当前链表元素slistelm的后面;
  • SLIST_INSERT_HEAD用于将元素elm插入到当前链表head的头部;head是SLIST_HEAD定义的链表头指针;
  • SLIST_REMOVE_NEXT用于将elm后面的元素删除,head未使用;注意删除时判断elm后面是否还有元素,否则会崩溃;
  • SLIST_REMOVE_HEAD用于删除第一个元素;注意删除时判断head是否为空,否则会崩溃;
  • SLIST_REMOVE用于从head链表中删除elm元素;注意首先判断elm元素是否在head链表中,否则会崩溃;

2.3 例子

#include <stdio.h>
#include <stdlib.h>
#include "queue.h"
struct SLIST_ITEM {
    int value;
    SLIST_ENTRY(SLIST_ITEM) entry;
};
int main(void) {
    int i;
    SLIST_HEAD(,SLIST_ITEM) slist_head;
    SLIST_INIT(&slist_head);
    if (SLIST_EMPTY(&slist_head))
        printf("single list is empty\n");
    struct SLIST_ITEM *item;
    struct SLIST_ITEM *item_temp;
    for( i = 0; i < 10; i += 1)
    {
            item = (struct SLIST_ITEM *)malloc(sizeof(struct SLIST_ITEM));
            item->value = i;
            item->entry.sle_next = NULL;
            SLIST_INSERT_HEAD(&slist_head, item, entry);
    }
    printf("after insert 10 item to single list:\n");
    SLIST_FOREACH(item, &slist_head, entry)
            printf("item value = %d\n", item->value);
    
    while( SLIST_EMPTY(&slist_head) == 0 ){
            item_temp = (&slist_head)->slh_first;
            SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry);
            free(item_temp);
    }
    printf("here");
    if ( SLIST_EMPTY(&slist_head) )
            printf("single list is empty\n");        
    return 0;
}

  • SLIST_INSERT_HEAD(&slist_head, item, entry)
    从头部插入元素,第一个参数为头节点,第一个参数为要插入的元素,第三个参数为自定义结构体中,自定义的SLIST_ENTRY(SLIST_ITEM)结构体变量名称。
  • SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry)
    删除对应元素( 内部仅是指针指向的改变,没有真正释放空间 )

三、STAILQ单向有尾链表

STAILQ 是 Singly-linked Tail queue 的缩写,意为单向有尾链表。有尾链表可作队列使用。

STAILQ相关的源码

/*
 * Singly-linked Tail queue declarations.
 */
#define STAILQ_HEAD(name, type)                                             \
struct name {                                                               \
    struct type *stqh_first;    /* first element */                         \
    struct type **stqh_last;    /* addr of last next element */             \
}
#define STAILQ_HEAD_INITIALIZER(head)                                       \
    { NULL, &(head).stqh_first }
#define STAILQ_ENTRY(type)                                                  \
struct {                                                                    \
    struct type *stqe_next; /* next element */                              \
}
/*
 * Singly-linked Tail queue functions.
 */
#define STAILQ_INIT(head) do {                                              \
    (head)->stqh_first = NULL;                                              \
    (head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_HEAD(head, elm, field) do {                           \
    if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)              \
        (head)->stqh_last = &(elm)->field.stqe_next;                        \
    (head)->stqh_first = (elm);                                             \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_TAIL(head, elm, field) do {                           \
    (elm)->field.stqe_next = NULL;                                          \
    *(head)->stqh_last = (elm);                                             \
    (head)->stqh_last = &(elm)->field.stqe_next;                            \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                 \
    if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)      \
        (head)->stqh_last = &(elm)->field.stqe_next;                        \
    (listelm)->field.stqe_next = (elm);                                     \
} while (/*CONSTCOND*/0)
#define STAILQ_REMOVE_HEAD(head, field) do {                                \
    if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
        (head)->stqh_last = &(head)->stqh_first;                            \
} while (/*CONSTCOND*/0)
#define STAILQ_REMOVE(head, elm, type, field) do {                          \
    if ((head)->stqh_first == (elm)) {                                      \
        STAILQ_REMOVE_HEAD((head), field);                                  \
    } else {                                                                \
        struct type *curelm = (head)->stqh_first;                           \
        while (curelm->field.stqe_next != (elm))                            \
            curelm = curelm->field.stqe_next;                               \
        if ((curelm->field.stqe_next =                                      \
            curelm->field.stqe_next->field.stqe_next) == NULL)              \
                (head)->stqh_last = &(curelm)->field.stqe_next;             \
    }                                                                       \
} while (/*CONSTCOND*/0)
#define STAILQ_FOREACH(var, head, field)                                    \
    for ((var) = ((head)->stqh_first);                                      \
        (var);                                                              \
        (var) = ((var)->field.stqe_next))
#define STAILQ_CONCAT(head1, head2) do {                                    \
    if (!STAILQ_EMPTY((head2))) {                                           \
        *(head1)->stqh_last = (head2)->stqh_first;                          \
        (head1)->stqh_last = (head2)->stqh_last;                            \
        STAILQ_INIT((head2));                                               \
    }                                                                       \
} while (/*CONSTCOND*/0)
/*
 * Singly-linked Tail queue access methods.
 */
#define STAILQ_EMPTY(head)          ((head)->stqh_first == NULL)
#define STAILQ_FIRST(head)          ((head)->stqh_first)
#define STAILQ_NEXT(elm, field)     ((elm)->field.stqe_next)

四、LIST双向无尾链表

双向链表有前向的指针,因此可以执行一些前向操作,而且无需遍历链表便可以删除一些节点。

LIST相关的源码

/*
 * List definitions.
 */
#define LIST_HEAD(name, type)                                               \
struct name {                                                               \
    struct type *lh_first;  /* first element */                             \
}
#define LIST_HEAD_INITIALIZER(head)                                         \
    { NULL }
#define LIST_ENTRY(type)                                                    \
struct {                                                                    \
    struct type *le_next;   /* next element */                              \
    struct type **le_prev;  /* address of previous next element */          \
}
/*
 * List functions.
 */
#define LIST_INIT(head) do {                                                \
    (head)->lh_first = NULL;                                                \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_AFTER(listelm, elm, field) do {                         \
    if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)          \
        (listelm)->field.le_next->field.le_prev =                           \
            &(elm)->field.le_next;                                          \
    (listelm)->field.le_next = (elm);                                       \
    (elm)->field.le_prev = &(listelm)->field.le_next;                       \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do {                        \
    (elm)->field.le_prev = (listelm)->field.le_prev;                        \
    (elm)->field.le_next = (listelm);                                       \
    *(listelm)->field.le_prev = (elm);                                      \
    (listelm)->field.le_prev = &(elm)->field.le_next;                       \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_HEAD(head, elm, field) do {                             \
    if (((elm)->field.le_next = (head)->lh_first) != NULL)                  \
        (head)->lh_first->field.le_prev = &(elm)->field.le_next;            \
    (head)->lh_first = (elm);                                               \
    (elm)->field.le_prev = &(head)->lh_first;                               \
} while (/*CONSTCOND*/0)
#define LIST_REMOVE(elm, field) do {                                        \
    if ((elm)->field.le_next != NULL)                                       \
        (elm)->field.le_next->field.le_prev =                               \
            (elm)->field.le_prev;                                           \
    *(elm)->field.le_prev = (elm)->field.le_next;                           \
} while (/*CONSTCOND*/0)
#define LIST_FOREACH(var, head, field)                                      \
    for ((var) = ((head)->lh_first);                                        \
        (var);                                                              \
        (var) = ((var)->field.le_next))
/*
 * List access methods.
 */
#define LIST_EMPTY(head)        ((head)->lh_first == NULL)
#define LIST_FIRST(head)        ((head)->lh_first)
#define LIST_NEXT(elm, field)   ((elm)->field.le_next)

五、TAILQ双向有尾链表

TAILQ 是 Tail queue 的缩写,意为双向有尾链表。

有尾链表可作队列使用。

双向有尾链表兼具了双向链表和有尾链表的特点。

TAILQ相关的源码

/*
 * Tail queue definitions.
 */
#define TAILQ_HEAD(name, type)                                              \
struct name {                                                               \
    struct type *tqh_first;     /* first element */                         \
    struct type **tqh_last;     /* addr of last next element */             \
}
#define TAILQ_HEAD_INITIALIZER(head)                                        \
    { NULL, &(head).tqh_first }
#define TAILQ_ENTRY(type)                                                   \
struct {                                                                    \
    struct type *tqe_next;      /* next element */                          \
    struct type **tqe_prev;     /* address of previous next element */      \
}
/*
 * Tail queue functions.
 */
#define TAILQ_INIT(head) do {                                               \
    (head)->tqh_first = NULL;                                               \
    (head)->tqh_last = &(head)->tqh_first;                                  \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_HEAD(head, elm, field) do {                            \
    if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)                \
        (head)->tqh_first->field.tqe_prev = &(elm)->field.tqe_next;         \
    else                                                                    \
        (head)->tqh_last = &(elm)->field.tqe_next;                          \
    (head)->tqh_first = (elm);                                              \
    (elm)->field.tqe_prev = &(head)->tqh_first;                             \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_TAIL(head, elm, field) do {                            \
    (elm)->field.tqe_next = NULL;                                           \
    (elm)->field.tqe_prev = (head)->tqh_last;                               \
    *(head)->tqh_last = (elm);                                              \
    (head)->tqh_last = &(elm)->field.tqe_next;                              \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                  \
    if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)        \
        (elm)->field.tqe_next->field.tqe_prev = &(elm)->field.tqe_next;     \
    else                                                                    \
        (head)->tqh_last = &(elm)->field.tqe_next;                          \
    (listelm)->field.tqe_next = (elm);                                      \
    (elm)->field.tqe_prev = &(listelm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do {                       \
    (elm)->field.tqe_prev = (listelm)->field.tqe_prev;                      \
    (elm)->field.tqe_next = (listelm);                                      \
    *(listelm)->field.tqe_prev = (elm);                                     \
    (listelm)->field.tqe_prev = &(elm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)
#define TAILQ_REMOVE(head, elm, field) do {                                 \
    if (((elm)->field.tqe_next) != NULL)                                    \
        (elm)->field.tqe_next->field.tqe_prev = (elm)->field.tqe_prev;      \
    else                                                                    \
        (head)->tqh_last = (elm)->field.tqe_prev;                           \
    *(elm)->field.tqe_prev = (elm)->field.tqe_next;                         \
} while (/*CONSTCOND*/0)
#define TAILQ_FOREACH(var, head, field)                                     \
    for ((var) = ((head)->tqh_first);                                       \
        (var);                                                              \
        (var) = ((var)->field.tqe_next))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field)                   \
    for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));    \
        (var);                                                              \
        (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
#define TAILQ_CONCAT(head1, head2, field) do {                              \
    if (!TAILQ_EMPTY(head2)) {                                              \
        *(head1)->tqh_last = (head2)->tqh_first;                            \
        (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;             \
        (head1)->tqh_last = (head2)->tqh_last;                              \
        TAILQ_INIT((head2));                                                \
    }                                                                       \
} while (/*CONSTCOND*/0)
/*
 * Tail queue access methods.
 */
#define TAILQ_EMPTY(head)       ((head)->tqh_first == NULL)
#define TAILQ_FIRST(head)       ((head)->tqh_first)
#define TAILQ_NEXT(elm, field)  ((elm)->field.tqe_next)
#define TAILQ_LAST(head, headname)                                          \
    (*(((struct headname *)((head)->tqh_last))->tqh_last))
#define TAILQ_PREV(elm, headname, field)                                    \
    (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))

六、CIRCLEQ循环链表

CIRCLEQ 是 Circular queue 的缩写,意为循环链表。

CIRCLEQ相关的源码

/*
 * Circular queue definitions.
 */
#define CIRCLEQ_HEAD(name, type)                                            \
struct name {                                                               \
    struct type *cqh_first;     /* first element */                         \
    struct type *cqh_last;      /* last element */                          \
}
#define CIRCLEQ_HEAD_INITIALIZER(head)                                      \
    { (void *)&head, (void *)&head }
#define CIRCLEQ_ENTRY(type)                                                 \
struct {                                                                    \
    struct type *cqe_next;      /* next element */                          \
    struct type *cqe_prev;      /* previous element */                      \
}
/*
 * Circular queue functions.
 */
#define CIRCLEQ_INIT(head) do {                                             \
    (head)->cqh_first = (void *)(head);                                     \
    (head)->cqh_last = (void *)(head);                                      \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \
    (elm)->field.cqe_next = (listelm)->field.cqe_next;                      \
    (elm)->field.cqe_prev = (listelm);                                      \
    if ((listelm)->field.cqe_next == (void *)(head))                        \
        (head)->cqh_last = (elm);                                           \
    else                                                                    \
        (listelm)->field.cqe_next->field.cqe_prev = (elm);                  \
    (listelm)->field.cqe_next = (elm);                                      \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {               \
    (elm)->field.cqe_next = (listelm);                                      \
    (elm)->field.cqe_prev = (listelm)->field.cqe_prev;                      \
    if ((listelm)->field.cqe_prev == (void *)(head))                        \
        (head)->cqh_first = (elm);                                          \
    else                                                                    \
        (listelm)->field.cqe_prev->field.cqe_next = (elm);                  \
    (listelm)->field.cqe_prev = (elm);                                      \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {                          \
    (elm)->field.cqe_next = (head)->cqh_first;                              \
    (elm)->field.cqe_prev = (void *)(head);                                 \
    if ((head)->cqh_last == (void *)(head))                                 \
        (head)->cqh_last = (elm);                                           \
    else                                                                    \
        (head)->cqh_first->field.cqe_prev = (elm);                          \
    (head)->cqh_first = (elm);                                              \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {                          \
    (elm)->field.cqe_next = (void *)(head);                                 \
    (elm)->field.cqe_prev = (head)->cqh_last;                               \
    if ((head)->cqh_first == (void *)(head))                                \
        (head)->cqh_first = (elm);                                          \
    else                                                                    \
        (head)->cqh_last->field.cqe_next = (elm);                           \
    (head)->cqh_last = (elm);                                               \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_REMOVE(head, elm, field) do {                               \
    if ((elm)->field.cqe_next == (void *)(head))                            \
        (head)->cqh_last = (elm)->field.cqe_prev;                           \
    else                                                                    \
        (elm)->field.cqe_next->field.cqe_prev = (elm)->field.cqe_prev;      \
    if ((elm)->field.cqe_prev == (void *)(head))                            \
        (head)->cqh_first = (elm)->field.cqe_next;                          \
    else                                                                    \
        (elm)->field.cqe_prev->field.cqe_next = (elm)->field.cqe_next;      \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_FOREACH(var, head, field)                                   \
    for ((var) = ((head)->cqh_first);                                       \
        (var) != (const void *)(head);                                      \
        (var) = ((var)->field.cqe_next))
#define CIRCLEQ_FOREACH_REVERSE(var, head, field)                           \
    for ((var) = ((head)->cqh_last);                                        \
        (var) != (const void *)(head);                                      \
        (var) = ((var)->field.cqe_prev))
/*
 * Circular queue access methods.
 */
#define CIRCLEQ_EMPTY(head)         ((head)->cqh_first == (void *)(head))
#define CIRCLEQ_FIRST(head)         ((head)->cqh_first)
#define CIRCLEQ_LAST(head)          ((head)->cqh_last)
#define CIRCLEQ_NEXT(elm, field)    ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field)    ((elm)->field.cqe_prev)
#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                 \
    (((elm)->field.cqe_next == (void *)(head))                              \
        ? ((head)->cqh_first)                                               \
        : (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field)                                 \
    (((elm)->field.cqe_prev == (void *)(head))                              \
        ? ((head)->cqh_last)                                                \
        : (elm->field.cqe_prev))

七、queue源码

在Linux系统中的路径为:/usr/include/sys/queue.h

也可以通过如下网址查看:https://codebrowser.dev/glibc/glibc/misc/sys/queue.h.html

queue.h

/*
 * Copyright (c) 1991, 1993
 *        The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *        @(#)queue.h        8.5 (Berkeley) 8/20/94
 */
#ifndef        _QUEUE_H_
#define        _QUEUE_H_
/*
 * This file defines five types of data structures: singly-linked lists,
 * lists, simple queues, tail queues, and circular queues.
 *
 * A singly-linked list is headed by a single forward pointer. The
 * elements are singly linked for minimum space and pointer manipulation
 * overhead at the expense of O(n) removal for arbitrary elements. New
 * elements can be added to the list after an existing element or at the
 * head of the list.  Elements being removed from the head of the list
 * should use the explicit macro for this purpose for optimum
 * efficiency. A singly-linked list may only be traversed in the forward
 * direction.  Singly-linked lists are ideal for applications with large
 * datasets and few or no removals or for implementing a LIFO queue.
 *
 * A list is headed by a single forward pointer (or an array of forward
 * pointers for a hash table header). The elements are doubly linked
 * so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before
 * or after an existing element or at the head of the list. A list
 * may only be traversed in the forward direction.
 *
 * A simple queue is headed by a pair of pointers, one the head of the
 * list and the other to the tail of the list. The elements are singly
 * linked to save space, so elements can only be removed from the
 * head of the list. New elements can be added to the list after
 * an existing element, at the head of the list, or at the end of the
 * list. A simple queue may only be traversed in the forward direction.
 *
 * A tail queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or
 * after an existing element, at the head of the list, or at the end of
 * the list. A tail queue may be traversed in either direction.
 *
 * A circle queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or after
 * an existing element, at the head of the list, or at the end of the list.
 * A circle queue may be traversed in either direction, but has a more
 * complex end of list detection.
 *
 * For details on the use of these macros, see the queue(3) manual page.
 */
/*
 * List definitions.
 */
#define        LIST_HEAD(name, type)                                                \
struct name {                                                                \
        struct type *lh_first;        /* first element */                        \
}
#define        LIST_HEAD_INITIALIZER(head)                                        \
        { NULL }
#define        LIST_ENTRY(type)                                                \
struct {                                                                \
        struct type *le_next;        /* next element */                        \
        struct type **le_prev;        /* address of previous next element */        \
}
/*
 * List functions.
 */
#define        LIST_INIT(head) do {                                                \
        (head)->lh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_AFTER(listelm, elm, field) do {                        \
        if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)        \
                (listelm)->field.le_next->field.le_prev =                \
                    &(elm)->field.le_next;                                \
        (listelm)->field.le_next = (elm);                                \
        (elm)->field.le_prev = &(listelm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_BEFORE(listelm, elm, field) do {                        \
        (elm)->field.le_prev = (listelm)->field.le_prev;                \
        (elm)->field.le_next = (listelm);                                \
        *(listelm)->field.le_prev = (elm);                                \
        (listelm)->field.le_prev = &(elm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_HEAD(head, elm, field) do {                                \
        if (((elm)->field.le_next = (head)->lh_first) != NULL)                \
                (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
        (head)->lh_first = (elm);                                        \
        (elm)->field.le_prev = &(head)->lh_first;                        \
} while (/*CONSTCOND*/0)
#define        LIST_REMOVE(elm, field) do {                                        \
        if ((elm)->field.le_next != NULL)                                \
                (elm)->field.le_next->field.le_prev =                         \
                    (elm)->field.le_prev;                                \
        *(elm)->field.le_prev = (elm)->field.le_next;                        \
} while (/*CONSTCOND*/0)
#define        LIST_FOREACH(var, head, field)                                        \
        for ((var) = ((head)->lh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.le_next))
/*
 * List access methods.
 */
#define        LIST_EMPTY(head)                ((head)->lh_first == NULL)
#define        LIST_FIRST(head)                ((head)->lh_first)
#define        LIST_NEXT(elm, field)                ((elm)->field.le_next)
/*
 * Singly-linked List definitions.
 */
#define        SLIST_HEAD(name, type)                                                \
struct name {                                                                \
        struct type *slh_first;        /* first element */                        \
}
#define        SLIST_HEAD_INITIALIZER(head)                                        \
        { NULL }
#define        SLIST_ENTRY(type)                                                \
struct {                                                                \
        struct type *sle_next;        /* next element */                        \
}
/*
 * Singly-linked List functions.
 */
#define        SLIST_INIT(head) do {                                                \
        (head)->slh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_AFTER(slistelm, elm, field) do {                        \
        (elm)->field.sle_next = (slistelm)->field.sle_next;                \
        (slistelm)->field.sle_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_HEAD(head, elm, field) do {                        \
        (elm)->field.sle_next = (head)->slh_first;                        \
        (head)->slh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE_HEAD(head, field) do {                                \
        (head)->slh_first = (head)->slh_first->field.sle_next;                \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE(head, elm, type, field) do {                        \
        if ((head)->slh_first == (elm)) {                                \
                SLIST_REMOVE_HEAD((head), field);                        \
        }                                                                \
        else {                                                                \
                struct type *curelm = (head)->slh_first;                \
                while(curelm->field.sle_next != (elm))                        \
                        curelm = curelm->field.sle_next;                \
                curelm->field.sle_next =                                \
                    curelm->field.sle_next->field.sle_next;                \
        }                                                                \
} while (/*CONSTCOND*/0)
#define        SLIST_FOREACH(var, head, field)                                        \
        for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
/*
 * Singly-linked List access methods.
 */
#define        SLIST_EMPTY(head)        ((head)->slh_first == NULL)
#define        SLIST_FIRST(head)        ((head)->slh_first)
#define        SLIST_NEXT(elm, field)        ((elm)->field.sle_next)
/*
 * Singly-linked Tail queue declarations.
 */
#define        STAILQ_HEAD(name, type)                                        \
struct name {                                                                \
        struct type *stqh_first;        /* first element */                        \
        struct type **stqh_last;        /* addr of last next element */                \
}
#define        STAILQ_HEAD_INITIALIZER(head)                                        \
        { NULL, &(head).stqh_first }
#define        STAILQ_ENTRY(type)                                                \
struct {                                                                \
        struct type *stqe_next;        /* next element */                        \
}
/*
 * Singly-linked Tail queue functions.
 */
#define        STAILQ_INIT(head) do {                                                \
        (head)->stqh_first = NULL;                                        \
        (head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_HEAD(head, elm, field) do {                        \
        if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)        \
                (head)->stqh_last = &(elm)->field.stqe_next;                \
        (head)->stqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.stqe_next = NULL;                                        \
        *(head)->stqh_last = (elm);                                        \
        (head)->stqh_last = &(elm)->field.stqe_next;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
                (head)->stqh_last = &(elm)->field.stqe_next;                \
        (listelm)->field.stqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE_HEAD(head, field) do {                                \
        if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
                (head)->stqh_last = &(head)->stqh_first;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE(head, elm, type, field) do {                        \
        if ((head)->stqh_first == (elm)) {                                \
                STAILQ_REMOVE_HEAD((head), field);                        \
        } else {                                                        \
                struct type *curelm = (head)->stqh_first;                \
                while (curelm->field.stqe_next != (elm))                        \
                        curelm = curelm->field.stqe_next;                \
                if ((curelm->field.stqe_next =                                \
                        curelm->field.stqe_next->field.stqe_next) == NULL) \
                            (head)->stqh_last = &(curelm)->field.stqe_next; \
        }                                                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_FOREACH(var, head, field)                                \
        for ((var) = ((head)->stqh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.stqe_next))
#define        STAILQ_CONCAT(head1, head2) do {                                \
        if (!STAILQ_EMPTY((head2))) {                                        \
                *(head1)->stqh_last = (head2)->stqh_first;                \
                (head1)->stqh_last = (head2)->stqh_last;                \
                STAILQ_INIT((head2));                                        \
        }                                                                \
} while (/*CONSTCOND*/0)
/*
 * Singly-linked Tail queue access methods.
 */
#define        STAILQ_EMPTY(head)        ((head)->stqh_first == NULL)
#define        STAILQ_FIRST(head)        ((head)->stqh_first)
#define        STAILQ_NEXT(elm, field)        ((elm)->field.stqe_next)
/*
 * Simple queue definitions.
 */
#define        SIMPLEQ_HEAD(name, type)                                        \
struct name {                                                                \
        struct type *sqh_first;        /* first element */                        \
        struct type **sqh_last;        /* addr of last next element */                \
}
#define        SIMPLEQ_HEAD_INITIALIZER(head)                                        \
        { NULL, &(head).sqh_first }
#define        SIMPLEQ_ENTRY(type)                                                \
struct {                                                                \
        struct type *sqe_next;        /* next element */                        \
}
/*
 * Simple queue functions.
 */
#define        SIMPLEQ_INIT(head) do {                                                \
        (head)->sqh_first = NULL;                                        \
        (head)->sqh_last = &(head)->sqh_first;                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_HEAD(head, elm, field) do {                        \
        if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)        \
                (head)->sqh_last = &(elm)->field.sqe_next;                \
        (head)->sqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.sqe_next = NULL;                                        \
        *(head)->sqh_last = (elm);                                        \
        (head)->sqh_last = &(elm)->field.sqe_next;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
                (head)->sqh_last = &(elm)->field.sqe_next;                \
        (listelm)->field.sqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE_HEAD(head, field) do {                                \
        if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
                (head)->sqh_last = &(head)->sqh_first;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE(head, elm, type, field) do {                        \
        if ((head)->sqh_first == (elm)) {                                \
                SIMPLEQ_REMOVE_HEAD((head), field);                        \
        } else {                                                        \
                struct type *curelm = (head)->sqh_first;                \
                while (curelm->field.sqe_next != (elm))                        \
                        curelm = curelm->field.sqe_next;                \
                if ((curelm->field.sqe_next =                                \
                        curelm->field.sqe_next->field.sqe_next) == NULL) \
                            (head)->sqh_last = &(curelm)->field.sqe_next; \
        }                                                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_FOREACH(var, head, field)                                \
        for ((var) = ((head)->sqh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.sqe_next))
/*
 * Simple queue access methods.
 */
#define        SIMPLEQ_EMPTY(head)                ((head)->sqh_first == NULL)
#define        SIMPLEQ_FIRST(head)                ((head)->sqh_first)
#define        SIMPLEQ_NEXT(elm, field)        ((elm)->field.sqe_next)
/*
 * Tail queue definitions.
 */
#define        _TAILQ_HEAD(name, type, qual)                                        \
struct name {                                                                \
        qual type *tqh_first;                /* first element */                \
        qual type *qual *tqh_last;        /* addr of last next element */        \
}
#define TAILQ_HEAD(name, type)        _TAILQ_HEAD(name, struct type,)
#define        TAILQ_HEAD_INITIALIZER(head)                                        \
        { NULL, &(head).tqh_first }
#define        _TAILQ_ENTRY(type, qual)                                        \
struct {                                                                \
        qual type *tqe_next;                /* next element */                \
        qual type *qual *tqe_prev;        /* address of previous next element */\
}
#define TAILQ_ENTRY(type)        _TAILQ_ENTRY(struct type,)
/*
 * Tail queue functions.
 */
#define        TAILQ_INIT(head) do {                                                \
        (head)->tqh_first = NULL;                                        \
        (head)->tqh_last = &(head)->tqh_first;                                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_HEAD(head, elm, field) do {                        \
        if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)        \
                (head)->tqh_first->field.tqe_prev =                        \
                    &(elm)->field.tqe_next;                                \
        else                                                                \
                (head)->tqh_last = &(elm)->field.tqe_next;                \
        (head)->tqh_first = (elm);                                        \
        (elm)->field.tqe_prev = &(head)->tqh_first;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.tqe_next = NULL;                                        \
        (elm)->field.tqe_prev = (head)->tqh_last;                        \
        *(head)->tqh_last = (elm);                                        \
        (head)->tqh_last = &(elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
                (elm)->field.tqe_next->field.tqe_prev =                 \
                    &(elm)->field.tqe_next;                                \
        else                                                                \
                (head)->tqh_last = &(elm)->field.tqe_next;                \
        (listelm)->field.tqe_next = (elm);                                \
        (elm)->field.tqe_prev = &(listelm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_BEFORE(listelm, elm, field) do {                        \
        (elm)->field.tqe_prev = (listelm)->field.tqe_prev;                \
        (elm)->field.tqe_next = (listelm);                                \
        *(listelm)->field.tqe_prev = (elm);                                \
        (listelm)->field.tqe_prev = &(elm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_REMOVE(head, elm, field) do {                                \
        if (((elm)->field.tqe_next) != NULL)                                \
                (elm)->field.tqe_next->field.tqe_prev =                 \
                    (elm)->field.tqe_prev;                                \
        else                                                                \
                (head)->tqh_last = (elm)->field.tqe_prev;                \
        *(elm)->field.tqe_prev = (elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_FOREACH(var, head, field)                                        \
        for ((var) = ((head)->tqh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.tqe_next))
#define        TAILQ_FOREACH_REVERSE(var, head, headname, field)                \
        for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));        \
                (var);                                                        \
                (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
#define        TAILQ_CONCAT(head1, head2, field) do {                                \
        if (!TAILQ_EMPTY(head2)) {                                        \
                *(head1)->tqh_last = (head2)->tqh_first;                \
                (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;        \
                (head1)->tqh_last = (head2)->tqh_last;                        \
                TAILQ_INIT((head2));                                        \
        }                                                                \
} while (/*CONSTCOND*/0)
/*
 * Tail queue access methods.
 */
#define        TAILQ_EMPTY(head)                ((head)->tqh_first == NULL)
#define        TAILQ_FIRST(head)                ((head)->tqh_first)
#define        TAILQ_NEXT(elm, field)                ((elm)->field.tqe_next)
#define        TAILQ_LAST(head, headname) \
        (*(((struct headname *)((head)->tqh_last))->tqh_last))
#define        TAILQ_PREV(elm, headname, field) \
        (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
/*
 * Circular queue definitions.
 */
#define        CIRCLEQ_HEAD(name, type)                                        \
struct name {                                                                \
        struct type *cqh_first;                /* first element */                \
        struct type *cqh_last;                /* last element */                \
}
#define        CIRCLEQ_HEAD_INITIALIZER(head)                                        \
        { (void *)&head, (void *)&head }
#define        CIRCLEQ_ENTRY(type)                                                \
struct {                                                                \
        struct type *cqe_next;                /* next element */                \
        struct type *cqe_prev;                /* previous element */                \
}
/*
 * Circular queue functions.
 */
#define        CIRCLEQ_INIT(head) do {                                                \
        (head)->cqh_first = (void *)(head);                                \
        (head)->cqh_last = (void *)(head);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        (elm)->field.cqe_next = (listelm)->field.cqe_next;                \
        (elm)->field.cqe_prev = (listelm);                                \
        if ((listelm)->field.cqe_next == (void *)(head))                \
                (head)->cqh_last = (elm);                                \
        else                                                                \
                (listelm)->field.cqe_next->field.cqe_prev = (elm);        \
        (listelm)->field.cqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {                \
        (elm)->field.cqe_next = (listelm);                                \
        (elm)->field.cqe_prev = (listelm)->field.cqe_prev;                \
        if ((listelm)->field.cqe_prev == (void *)(head))                \
                (head)->cqh_first = (elm);                                \
        else                                                                \
                (listelm)->field.cqe_prev->field.cqe_next = (elm);        \
        (listelm)->field.cqe_prev = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_HEAD(head, elm, field) do {                        \
        (elm)->field.cqe_next = (head)->cqh_first;                        \
        (elm)->field.cqe_prev = (void *)(head);                                \
        if ((head)->cqh_last == (void *)(head))                                \
                (head)->cqh_last = (elm);                                \
        else                                                                \
                (head)->cqh_first->field.cqe_prev = (elm);                \
        (head)->cqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.cqe_next = (void *)(head);                                \
        (elm)->field.cqe_prev = (head)->cqh_last;                        \
        if ((head)->cqh_first == (void *)(head))                        \
                (head)->cqh_first = (elm);                                \
        else                                                                \
                (head)->cqh_last->field.cqe_next = (elm);                \
        (head)->cqh_last = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_REMOVE(head, elm, field) do {                                \
        if ((elm)->field.cqe_next == (void *)(head))                        \
                (head)->cqh_last = (elm)->field.cqe_prev;                \
        else                                                                \
                (elm)->field.cqe_next->field.cqe_prev =                        \
                    (elm)->field.cqe_prev;                                \
        if ((elm)->field.cqe_prev == (void *)(head))                        \
                (head)->cqh_first = (elm)->field.cqe_next;                \
        else                                                                \
                (elm)->field.cqe_prev->field.cqe_next =                        \
                    (elm)->field.cqe_next;                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_FOREACH(var, head, field)                                \
        for ((var) = ((head)->cqh_first);                                \
                (var) != (const void *)(head);                                \
                (var) = ((var)->field.cqe_next))
#define        CIRCLEQ_FOREACH_REVERSE(var, head, field)                        \
        for ((var) = ((head)->cqh_last);                                \
                (var) != (const void *)(head);                                \
                (var) = ((var)->field.cqe_prev))
/*
 * Circular queue access methods.
 */
#define        CIRCLEQ_EMPTY(head)                ((head)->cqh_first == (void *)(head))
#define        CIRCLEQ_FIRST(head)                ((head)->cqh_first)
#define        CIRCLEQ_LAST(head)                ((head)->cqh_last)
#define        CIRCLEQ_NEXT(elm, field)        ((elm)->field.cqe_next)
#define        CIRCLEQ_PREV(elm, field)        ((elm)->field.cqe_prev)
#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                \
        (((elm)->field.cqe_next == (void *)(head))                        \
            ? ((head)->cqh_first)                                        \
            : (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field)                                \
        (((elm)->field.cqe_prev == (void *)(head))                        \
            ? ((head)->cqh_last)                                        \
            : (elm->field.cqe_prev))
#endif        /* sys/queue.h */

参考

  1. https://www.codeleading.com/article/52881355491/
  2. https://blog.csdn.net/tissar/article/details/86978743
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
29天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制
本文深入探讨了Linux操作系统中用于管理多线程和进程的并发控制的关键技术,包括原子操作、锁机制、自旋锁、互斥量以及信号量。通过详细分析这些技术的原理和应用,旨在为读者提供一个关于如何有效利用Linux内核提供的并发控制工具以优化系统性能和稳定性的综合视角。
|
29天前
|
缓存 负载均衡 算法
深入探索Linux内核的调度机制
本文旨在揭示Linux操作系统核心的心脏——进程调度机制。我们将从Linux内核的架构出发,深入剖析其调度策略、算法以及它们如何共同作用于系统性能优化和资源管理。不同于常规摘要提供文章概览的方式,本摘要将直接带领读者进入Linux调度机制的世界,通过对其工作原理的解析,展现这一复杂系统的精妙设计与实现。
73 8
|
1月前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
67 4
|
12天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
12天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
13天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
13天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
15天前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
32 3
|
18天前
|
负载均衡 算法 Linux
深入探索Linux内核调度器:公平与效率的平衡####
本文通过剖析Linux内核调度器的工作机制,揭示了其在多任务处理环境中如何实现时间片轮转、优先级调整及完全公平调度算法(CFS),以达到既公平又高效地分配CPU资源的目标。通过对比FIFO和RR等传统调度策略,本文展示了Linux调度器如何在复杂的计算场景下优化性能,为系统设计师和开发者提供了宝贵的设计思路。 ####
31 6
|
17天前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。